Advertisement

A still unsettled issue in the nucleon spin decomposition problem: On the role of surface terms and gluon topology

  • Masashi WakamatsuEmail author
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract.

In almost all the past analyses of the decomposition of the nucleon spin into its constituents, surface terms are simply assumed to vanish and not to affect the integrated sum rule of the nucleon spin. However, several authors claim that neglect of surface terms is not necessarily justified, especially owing to the possible nontrivial topological configuration of the gluon field in the QCD vacuum. There also exist some arguments indicating that the nontrivial gluon topology would bring about a delta-function type singularity at zero Bjorken variable into the longitudinally polarized gluon distribution function, thereby invalidating a naive partonic sum rule for the total nucleon spin. In the present paper, we carefully examine the role of surface terms in the nucleon spin decomposition problem. We shall argue that surface terms do not prevent us from obtaining a physically meaningful decomposition of the nucleon spin. In particular, we demonstrate that nontrivial topology of the gluon field would not bring about a delta-function type singularity into the longitudinally polarized gluon distribution functions. We also make some critical comments on the recent analyses of the role of surface terms in the density level decomposition of the total nucleon angular momentum as well as that of the total photon angular momentum.

References

  1. 1.
    E. Leader, C. Lorce, Phys. Rep. 541, 163 (2014)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Wakamatsu, Int. J. Mod. Phys. A 29, 1430012 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    R. Jaffe, A. Manohar, Nucl. Phys. B 337, 509 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    X. Ji, Phys. Rev. Lett. 78, 610 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    X.-S. Chen, X.-F. Lu, W.-M. Sun, F. Wang, T. Goldman, Phys. Rev. Lett. 100, 232002 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    X.-S. Chen, W.-M. Sun, X.-F. Lu, F. Wang, T. Goldman, Phys. Rev. Lett. 103, 062001 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    S. Bashinsky, R. Jaffe, Nucl. Phys. B 536, 303 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    M. Wakamatsu, Phys. Rev. D 81, 114010 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    M. Wakamatsu, Phys. Rev. D 83, 014012 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    M. Wakamatsu, Eur. Phys. J. A 51, 52 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    M. Wakamatsu, Phys. Rev. D 94, 056004 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    M. Wakamatsu, Phys. Rev. D 87, 094035 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    P. Lowdon, Nucl. Phys. B 889, 801 (2014)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Bass, Rev. Mod. Phys. 77, 1257 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    S. Bass, Mod. Phys. Lett. A 24, 1087 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S. Tiwari, Topological approach to proton spin problem: Decomposition controversy and beyond, arXiv:1509.04159 [physics.gen-ph]Google Scholar
  17. 17.
    G. Nayak, Effect of confinement on proton spin crisis: Angular momentum flux contribution to the proton spin, arXiv:1803.08371 [hep-ph]Google Scholar
  18. 18.
    G. Nayak, Boundary surface term in QCD is at finite distance due to confinement of quarks and gluons inside finite size hadron, arXiv:1807.09158 [physics.gen-ph]Google Scholar
  19. 19.
    M. Burkardt, Y. Koike, Nucl. Phys. B 632, 311 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    F. Aslan, M. Burkardt, Singularities in twist-3 quark distributions, arXiv:1811.00938 [nucl-th]Google Scholar
  21. 21.
    M. Wakamatsu, Y. Ohnishi, Phys. Rev. D 67, 114011 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    A. Efremov, P. Schweitzer, JHEP 08, 006 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Ohnishi, M. Wakamatsu, Phys. Rev. D 69, 114002 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    P. Schweitzer, Phys. Rev. D 67, 114010 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    E. Leader, Phys. Lett. B 756, 303 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    E. Leader, Phys. Lett. B 779, 385 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    C. Lorce, L. Mantovani, B. Pasquini, Phys. Lett. B 776, 38 (2018)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Stewart, Eur. J. Phys. 26, 635 (2005)CrossRefGoogle Scholar
  29. 29.
    G. Shore, B. White, Nucl. Phys. B 581, 409 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    B. Bakker, E. Leader, T. Trueman, Phys. Rev. D 70, 114001 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    K. Sasaki, Prog. Theor. Phys. 54, 1816 (1975)ADSCrossRefGoogle Scholar
  32. 32.
    M. Ahmed, G. Ross, Phys. Lett. B 56, 385 (1975)ADSCrossRefGoogle Scholar
  33. 33.
    J. Collins, D. Soper, Nucl. Phys. B 194, 445 (1982)ADSCrossRefGoogle Scholar
  34. 34.
    J. Kodaira, K. Tanaka, Prog. Theor. Phys. 101, 191 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    A. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B 656, 165 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    D. Boer, P. Mulders, F. Pijlman, Nucl. Phys. B 667, 201 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    A. Manohar, Phys. Rev. Lett. 65, 2511 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    A. Manohar, Phys. Rev. Lett. 66, 289 (1991)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Hatta, Phys. Rev. D 84, 041701(R) (2011)ADSCrossRefGoogle Scholar
  40. 40.
    M. Burkardt, Phys. Rev. D 88, 014014 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    W.-M. Zhang, A. Harindranath, Phys. Lett. B 314, 223 (1993)ADSCrossRefGoogle Scholar
  42. 42.
    M. Ornigotti, A. Aiello, Opt. Express 22, 6586 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    L.W. Allen, M. Beijersbergen, R. Spreeuw, J. Woerdman, Phys. Rev. A 45, 8185 (1992)ADSCrossRefGoogle Scholar
  44. 44.
    M. Wakamatsu, Y. Kitadono, L. Zou, P.-M. Zhang, Ann. Phys. 397, 259 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    F. Belinfante, Physica 6, 887 (1939)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    F. Belinfante, Physica 7, 449 (1940)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    L. Rosenfeld, Mem. Acad. R. Belg. Sci. 18, 1 (1940)Google Scholar
  48. 48.
    M. Wakamatsu, Y. Kitadono, P.-M. Zhang, Ann. Phys. 392, 287 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.KEK Theory Center, Institute of Particle and Nuclear StudiesHigh Energy Accelerator Research Organization (KEK)Tsukuba, IbarakiJapan

Personalised recommendations