Advertisement

Role of magic numbers in thermodynamic quantities of 206Pb and 138Ba using BCS and Lipkin-Nogami models

  • Kh. BenamEmail author
  • V. Dehghani
  • S. A. Alavi
Regular Article - Theoretical Physics
  • 25 Downloads

Abstract.

The level density is calculated using the Barden-Cooper-Schriefer (BCS) and Lipkin-Nogami (LN) models for 206Pb and 138Ba nuclei and compared with the experimental data. It has been shown that the calculated level densities using both models are highly matched with the experimental data. The spin cut off factor, moment of inertia, excitation energy, and entropy were calculated using the above mentioned models. The protons in the 206Pb nucleus occupy a closed shell and the 138Ba nucleus has a closed neutron shell. It was revealed that the contribution of the nucleons with magic number to the mentioned thermodynamic quantities is less than that of the nucleons from open shells at low temperature.

References

  1. 1.
    L.G. Moretto, Nucl. Phys. A 185, 145 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    A.N. Behkami, J.R. Huizenga, Nucl. Phys. A 217, 78 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    R. Razavi, Phys. Rev. C 86, 047303 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    R. Razavi, A.N. Behkami, V. Dehghani, Nucl. Phys. A 930, 57 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Moller, J.R. Nix, Nucl. Phys. A 536, 20 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    N. Sandulescu, O. Civitarese, R.J. Liotta, Phys. Rev. C 61, 044317 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    K. Kaneko, M. Hasegawa, Nucl. Phys. A 740, 95 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Kargar, Phys. Rev. C 75, 064319 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    H.J. Lipkin, Ann. Phys. 9, 272 (1960)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Nogami, Phys. Rev. B 313, 134 (1964)Google Scholar
  12. 12.
    H.C. Pradhan, Y. Nogami, J. Law, Nucl. Phys. A 201, 357 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    N.D. Dang, Z. Phys. A 335, 253 (1990)ADSGoogle Scholar
  14. 14.
    N.U.H. Syed et al., Phys. Rev. C 79, 024316 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    A.M. Sukhovoj, V.A. Khitrov, Fiz. Elem. Chastits At. Yadra 36, 697 (2005) (Phys. Part. Nucl. 36Google Scholar
  16. 16.
    E. Gadioli, P.E. Hodgson, Pre-Equilibrium Nuclear Reactions (Oxford University Press, New York, 1992)Google Scholar
  17. 17.
    A.J. Cole, Statistical Models for Nuclear Decay: From Evaporation to Vaporization (IOP Publishing Ltd, 2000)Google Scholar
  18. 18.
    J. Damgaard, H.C. Pauli, V.V. Pashkevich, V.M. Strutinsky, Nucl. Phys. A 135, 432 (1969)ADSCrossRefGoogle Scholar
  19. 19.
    S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, T. Werner, Comput. Phys. Commun. 46, 379 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Patyk, A. Sobiczewski, Nucl. Phys. A 533, 132 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Dehdasht BranchIslamic Azad UniversityDehdashtIran
  2. 2.Department of Physics, Faculty of SciencesUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations