Advertisement

The open LPC Paul trap for precision measurements in beta decay

  • P. DelahayeEmail author
  • G. Ban
  • M. Benali
  • D. Durand
  • X. Fabian
  • X. Fléchard
  • M. Herbane
  • E. Liénard
  • F. Mauger
  • A. Méry
  • Y. Merrer
  • O. Naviliat-Cuncic
  • G. Quéméner
  • B. M. Retailleau
  • D. Rodriguez
  • J. C. Thomas
  • P. Ujic
Regular Article - Experimental Physics
  • 32 Downloads

Abstract.

The LPCTrap experiment uses an open Paul trap which was built to enable precision measurements in the beta decay of radioactive ions. The initial goal was the precise measurement of the beta-neutrino angular correlation coefficient in the decay of 6He . Its geometry results from a careful optimization of the harmonic potential created by cylindrical electrodes. It supersedes previously considered geometries that presented a smaller detection solid angle to the beta particle and the recoiling ion. We describe here the methods which were used for the potential optimization, and we present the measured performances in terms of trapping time, cloud size and temperature, and space charge related limits. The properties of the ion cloud at equilibrium are investigated by a simple numerical simulation using hard sphere collisions, which additionally gives insights on the trapping loss mechanism. The interpretation for the observed trapping lifetimes is further corroborated by a model recently developed for ion clouds in Paul traps. The open trap shall serve other projects. It is currently used for commissioning purpose in the TRAPSENSOR experiment and is also considered in tests of the Standard Model involving the beta decay of polarized 23Mg and 39Ca ion in the frame of the MORA experiment. The latter tests require in-trap polarization of the ions and further optimization of the trapping and detection setup. Based on the results of the simulations and of their interpretation, different improvements of the trapping setup are discussed.

References

  1. 1.
    G. Ban et al., Ann. Phys. (Berlin) 525, 576 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    M. Gonzalez-Alonso, O. Naviliat-Cuncic, N. Severijns, Prog. Part. Nucl. Phys. 104, 165 (2019)ADSCrossRefGoogle Scholar
  3. 3.
    R.E. March, J.F.J. Todd, Quadrupole Ion Trap Mass Spectrometry, in Chemical Analysis, a series of monographs on analytical chemistry and its applications, edited by J.D. Winefordner (Wiley, 2005)Google Scholar
  4. 4.
    R. Alheit, C. Henning, R. Morgenstern, F. Vedel, G. Werth, Appl. Phys. B 61, 277 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    P. Delahaye et al., Hyperfine Interact. 132, 475 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    P. Delahaye, PhD Thesis (University of Caen Basse-Normandie, 2002)Google Scholar
  7. 7.
    P. Delahaye, A new Paul trap geometry for a measurement of $\beta$-$\nu$ angular correlation in ^6He decay, poster presented at the HCI Conference, Caen (2002)Google Scholar
  8. 8.
    D. Manura, D. Dahl, SIMION (R) 8.0 User Manual (Scientific Instrument Services, Inc., Ringoes, NJ, 2008) http://simion.com/
  9. 9.
    P.H. Dawson, Quadrupole Mass Spectrometry and its Applications (American Vacuum Society Classics, 1976)Google Scholar
  10. 10.
    D. Rodriguez, A. Méry, G. Ban, J. Brégeault, G. Darius, D. Durand, X. Fléchard, M. Herbane, M. Labalme, E. Liénard et al., D. Nucl. Instrum. Methods Phys. Res. A 565, 876 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    X. Fléchard, Ph. Velten, E. Liénard et al., J. Phys. G: Nucl. Part. Phys. 38, 055101 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipies in C, second edition (Cambridge University Press, 1992)Google Scholar
  13. 13.
    L.A. Viehland, E.A. Mason, At. Nucl. Data Tables 60, 37 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    X. Fabian, F. Mauger, G. Quéméner, Ph. Velten, G. Ban, C. Couratin, P. Delahaye, D. Durand, B. Fabre, P. Finlay et al., Hyperfine Interact. 235, 87 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    X. Fabian, PhD Thesis (University of Caen), HAL Id: tel-01288412Google Scholar
  16. 16.
    P. Delahaye, Eur. Phys. J. A 55, 83 (2019) arXiv:1810.09121 [physics.plasm-ph]ADSCrossRefGoogle Scholar
  17. 17.
    F.G. Major, H.G. Dehmelt, Phys. Rev. 170, 91 (1968)ADSCrossRefGoogle Scholar
  18. 18.
    X. Fléchard, G. Ban, D. Durand, E. Liénard, F. Mauger, A. Méry, O. Naviliat-Cuncic, D. Rodriguez, P. Velten, Hyperfine Interact. 199, 21 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    R. Moszynski et al., J. Chem. Phys. 6, 4697 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    E. Liénard, G. Ban, C. Couratin, P. Delahaye, D. Durand et al., Hyperfine Interact. 236, 1 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    P. Delahaye, E. Liénard, I. Moore et al., Hyperfine Interact. 240, 63 (2019)ADSCrossRefGoogle Scholar
  22. 22.
    G. Neyens et al., Phys. Rev. Lett. 94, 022501 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    M. Kowalska et al., Phys. Rev. C 77, 034307 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    M. Schwarz et al., Rev. Sci. Instrum. 83, 083115 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S. Schwarz et al., Nucl. Instrum. Methods B 204, 474 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    J.M. Cornejo, P. Escobedo, D. Rodríguez, Hyperfine Interact. 227, 223 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Cornejo et al., Rev. Sci. Instrum. 86, 103104 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • P. Delahaye
    • 1
    • 2
    Email author
  • G. Ban
    • 2
  • M. Benali
    • 2
  • D. Durand
    • 2
  • X. Fabian
    • 3
  • X. Fléchard
    • 2
  • M. Herbane
    • 2
  • E. Liénard
    • 2
  • F. Mauger
    • 2
  • A. Méry
    • 4
  • Y. Merrer
    • 2
  • O. Naviliat-Cuncic
    • 2
    • 5
  • G. Quéméner
    • 2
  • B. M. Retailleau
    • 1
  • D. Rodriguez
    • 6
  • J. C. Thomas
    • 1
  • P. Ujic
    • 1
  1. 1.GANIL, CEA/DSM-CNRS/IN2P3CaenFrance
  2. 2.Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC CaenCaenFrance
  3. 3.Institut de Physique nucléaire de LyonVilleurbanneFrance
  4. 4.CIMAP, CEA/CNRS/ENSICAEN, Université de CaenCaenFrance
  5. 5.National Superconducting Cyclotron Laboratory and Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  6. 6.Departamento de Física Atómica Molecular y NuclearUniversidad de GranadaGranadaSpain

Personalised recommendations