Confronting gravitational-wave observations with modern nuclear physics constraints

  • I. TewsEmail author
  • J. Margueron
  • S. Reddy
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physics


Multi-messenger observations of neutron star (NS) mergers have the potential to revolutionize nuclear astrophysics. They will improve our understanding of nucleosynthesis, provide insights about the equation of state (EOS) of strongly interacting matter at high densities, and enable tests of the theory of gravity and of dark matter. Here, we focus on the EOS, where both gravitational waves (GWs) from neutron-star mergers and X-ray observations from space-based detectors such as NICER will provide more stringent constraints on the structure of neutron stars. Furthermore, recent advances in nuclear theory have enabled reliable calculations of the EOS at low densities using effective field theory based Hamiltonians and advanced techniques to solve the quantum many-body problem. In this paper, we address how the first observation of GWs from GW170817 can be combined with modern calculations of the EOS to extract useful insights about the EOS of matter encountered inside neutron stars. We analyze the impact of various uncertainties, the role of phase transitions in the NS core, and discuss how future observations will improve our understanding of dense matter.


  1. 1.
    Virgo, LIGO Scientific Collaborations (B. Abbott et al.), Phys. Rev. Lett. 119, 161101 (2017) arXiv:1710.05832ADSCrossRefGoogle Scholar
  2. 2.
    GROND Collaboration, SALT Group, OzGrav Collaboration, DFN Collaboration, INTEGRAL Collaboration, Virgo Collaboration, Insight-Hxmt Collaboration, MAXI Team, Fermi-LAT Collaboration, J-GEM Collaboration, RATIR Collaboration, IceCube Collaboration, CAASTRO Collaboration, LWA Collaboration, ePESSTO Collaboration, GRAWITA Collaboration, RIMAS Collaboration, SKA South Africa/MeerKAT Collaboration, H.E.S.S. Collaboration, 1M2H Team, IKI-GW Follow-up Collaboration, Fermi GBM Collaboration, Pi of Sky Collaboration, DWF (Deeper Wider Faster Program) Collaboration, Dark Energy Survey Collaboration, MASTER Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, Swift Collaboration, Pierre Auger Collaboration, ASKAP Collaboration, VINROUGE Collaboration, JAGWAR Collaboration, Chandra Team at McGill University, TTU-NRAO Collaboration, GROWTH Collaboration, AGILE Team, MWA Collaboration, ATCA Collaboration, AST3 Collaboration, TOROS Collaboration, Pan-STARRS Collaboration, NuSTAR Collaboration, ATLAS Telescopes Collaboration, BOOTES Collaboration, CaltechNRAO Collaboration, LIGO Scientific Collaboration, High Time Resolution Universe Survey Collaboration, Nordic Optical Telescope Collaboration, Las Cumbres Observatory Group Collaboration, TZAC Consortium Collaboration, LOFAR Collaboration, IPN Collaboration, DLT40 Collaboration, Texas Tech University, HAWC Collaboration, ANTARES Collaboration, KU Collaboration, Dark Energy Camera GW-EM Collaboration, CALET Collaboration, Euro VLBI Team, ALMA Collaboration (B.P. Abbott et al.), Astrophys. J. 848, L12 (2017) arXiv:1710.05833ADSCrossRefGoogle Scholar
  3. 3.
    Virgo Collaboration, Fermi-GBM Collaboration, INTEGRAL Collaboration, LIGO Scientific Collaboration (B.P. Abbott et al.), Astrophys. J. 848, L13 (2017) arXiv:1710.05834ADSCrossRefGoogle Scholar
  4. 4.
    LIGO Scientific, Virgo Collaboration (B.P. Abbott et al.), Phys. Rev. X 9, 011001 (2019) arXiv:1805.11579Google Scholar
  5. 5.
    V. Savchenko et al., Astrophys. J. 848, L15 (2017) arXiv:1710.05449ADSCrossRefGoogle Scholar
  6. 6.
    M.R. Drout et al., Science 358, 1570 (2017) arXiv:1710.05443ADSCrossRefGoogle Scholar
  7. 7.
    E. Annala, T. Gorda, A. Kurkela, A. Vuorinen, Phys. Rev. Lett. 120, 172703 (2018) arXiv:1711.02644ADSCrossRefGoogle Scholar
  8. 8.
    F.J. Fattoyev, J. Piekarewicz, C.J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018) arXiv:1711.06615ADSCrossRefGoogle Scholar
  9. 9.
    E.R. Most, L.R. Weih, L. Rezzolla, J. Schaffner-Bielich, Phys. Rev. Lett. 120, 261103 (2018) arXiv:1803.00549ADSCrossRefGoogle Scholar
  10. 10.
    Y. Lim, J.W. Holt, Phys. Rev. Lett. 121, 062701 (2018) arXiv:1803.02803ADSCrossRefGoogle Scholar
  11. 11.
    I. Tews, J. Margueron, S. Reddy, Phys. Rev. C 98, 045804 (2018) arXiv:1804.02783ADSCrossRefGoogle Scholar
  12. 12.
    A. Bauswein, O. Just, H.T. Janka, N. Stergioulas, Astrophys. J. 850, L34 (2017) arXiv:1710.06843ADSCrossRefGoogle Scholar
  13. 13.
    J.E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis, K.E. Schmidt, A. Schwenk, Phys. Rev. Lett. 116, 062501 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    I. Tews, J. Carlson, S. Gandolfi, S. Reddy, Astrophys. J. 860, 149 (2018) arXiv:1801.01923ADSCrossRefGoogle Scholar
  15. 15.
    J.A. Melendez, S. Wesolowski, R.J. Furnstahl, Phys. Rev. C 96, 024003 (2017) arXiv:1704.03308ADSCrossRefGoogle Scholar
  16. 16.
    M. Alford, M. Braby, M.W. Paris, S. Reddy, Astrophys. J. 629, 969 (2005) nucl-th/0411016ADSCrossRefGoogle Scholar
  17. 17.
    I. Tews, J.M. Lattimer, A. Ohnishi, E.E. Kolomeitsev, Astrophys. J. 848, 105 (2017) arXiv:1611.07133ADSCrossRefGoogle Scholar
  18. 18.
    K. Hebeler, A. Schwenk, Phys. Rev. C 82, 014314 (2010) arXiv:0911.0483ADSCrossRefGoogle Scholar
  19. 19.
    C. Drischler, A. Carbone, K. Hebeler, A. Schwenk, Phys. Rev. C 94, 054307 (2016) arXiv:1608.05615ADSCrossRefGoogle Scholar
  20. 20.
    J.W. Holt, N. Kaiser, Phys. Rev. C 95, 034326 (2017) arXiv:1612.04309ADSCrossRefGoogle Scholar
  21. 21.
    G. Hagen, T. Papenbrock, A. Ekström, K.A. Wendt, G. Baardsen, S. Gandolfi, M. Hjorth-Jensen, C.J. Horowitz, Phys. Rev. C 89, 014319 (2014) arXiv:1311.2925ADSCrossRefGoogle Scholar
  22. 22.
    S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801 (2012) arXiv:1101.1921ADSCrossRefGoogle Scholar
  23. 23.
    A. Carbone, A. Rios, A. Polls, Phys. Rev. C 90, 054322 (2014) arXiv:1408.0717ADSCrossRefGoogle Scholar
  24. 24.
    S. Gandolfi, A. Gezerlis, J. Carlson, Annu. Rev. Nucl. Part. Sci. 65, 303 (2015) arXiv:1501.05675ADSCrossRefGoogle Scholar
  25. 25.
    K. Hebeler, J.D. Holt, J. Menendez, A. Schwenk, Annu. Rev. Nucl. Part. Sci. 65, 457 (2015) arXiv:1508.06893ADSCrossRefGoogle Scholar
  26. 26.
    J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, arXiv:1412.3081 (2014)Google Scholar
  27. 27.
    M. Piarulli, A. Baroni, L. Girlanda, A. Kievsky, A. Lovato, E. Lusk, L.E. Marcucci, S.C. Pieper, R. Schiavilla, M. Viviani et al., Phys. Rev. Lett. 120, 052503 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    D. Lonardoni, J. Carlson, S. Gandolfi, J.E. Lynn, K.E. Schmidt, A. Schwenk, X. Wang, Phys. Rev. Lett. 120, 122502 (2018) arXiv:1709.09143ADSCrossRefGoogle Scholar
  29. 29.
    J. Carlson, S. Reddy, Phys. Rev. Lett. 100, 150403 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    S. NascimbÃ, Nature 463, 1057 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    N. Navon, S. Nascimbene, F. Chevy, C. Salomon, Science 328, 729 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M.W. Zwierlein, Superfluidity in Ultracold Atomic Fermi Gases, Vol. 2 (Oxford University Press, 2014)Google Scholar
  33. 33.
    D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva, Phys. Rev. Lett. 114, 092301 (2015) arXiv:1407.4448ADSCrossRefGoogle Scholar
  34. 34.
    S. Gandolfi, H.W. Hammer, P. Klos, J.E. Lynn, A. Schwenk, Phys. Rev. Lett. 118, 232501 (2017) arXiv:1612.01502ADSCrossRefGoogle Scholar
  35. 35.
    E. Epelbaum, H.W. Hammer, U.G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. Lett. 111, 032501 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. C 90, 054323 (2014) arXiv:1406.0454ADSCrossRefGoogle Scholar
  39. 39.
    I. Tews, S. Gandolfi, A. Gezerlis, A. Schwenk, Phys. Rev. C 93, 024305 (2016) arXiv:1507.05561ADSCrossRefGoogle Scholar
  40. 40.
    J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C 97, 025805 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    J.E. Lynn, I. Tews, S. Gandolfi, A. Lovato, arXiv:1901.04868 (2019)Google Scholar
  42. 42.
    R.J. Furnstahl, N. Klco, D.R. Phillips, S. Wesolowski, Phys. Rev. C 92, 024005 (2015) arXiv:1506.01343ADSCrossRefGoogle Scholar
  43. 43.
    E. Epelbaum, H. Krebs, U.G. Meißner, Eur. Phys. J. A 51, 53 (2015) arXiv:1412.0142ADSCrossRefGoogle Scholar
  44. 44.
    L. Huth, I. Tews, J.E. Lynn, A. Schwenk, Phys. Rev. C 96, 054003 (2017) arXiv:1708.03194ADSCrossRefGoogle Scholar
  45. 45.
    J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C 97, 025806 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    I. Tews, Phys. Rev. C 95, 015803 (2017) arXiv:1607.06998ADSCrossRefGoogle Scholar
  47. 47.
    M.G. Alford, S. Han, M. Prakash, Phys. Rev. D 88, 083013 (2013) arXiv:1302.4732ADSCrossRefGoogle Scholar
  48. 48.
    S.K. Greif, G. Raaijmakers, K. Hebeler, A. Schwenk, A.L. Watts, arXiv:1812.08188 (2018)Google Scholar
  49. 49.
    J.S. Read, B.D. Lackey, B.J. Owen, J.L. Friedman, Phys. Rev. D 79, 124032 (2009) arXiv:0812.2163ADSCrossRefGoogle Scholar
  50. 50.
    K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Astrophys. J. 773, 11 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    C.A. Raithel, F. Ozel, D. Psaltis, Astrophys. J. 831, 44 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    J. Antoniadis, P.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch et al., Science 340, 6131 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    E. Fonseca et al., Astrophys. J. 832, 167 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    K. Gendreau, Z. Arzoumanian, T. Okaajima, Proc. SPIE 8443, 844313 (2012)CrossRefGoogle Scholar
  56. 56.
    C.E. Rhoades, R. Ruffini, Phys. Rev. Lett. 32, 324 (1974)ADSCrossRefGoogle Scholar
  57. 57.
    V. Kalogera, G. Baym, Astrophys. J. 470, L61 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    V. Paschalidis, K. Yagi, D. Alvarez-Castillo, D.B. Blaschke, A. Sedrakian, Phys. Rev. D 97, 084038 (2018) arXiv:1712.00451ADSCrossRefGoogle Scholar
  59. 59.
    M.G. Alford, G.F. Burgio, S. Han, G. Taranto, D. Zappalà, Phys. Rev. D 92, 083002 (2015) arXiv:1501.07902ADSCrossRefGoogle Scholar
  60. 60.
    S. De, D. Finstad, J.M. Lattimer, D.A. Brown, E. Berger, C.M. Biwer, Phys. Rev. Lett. 121, 091102 (2018) arXiv:1804.08583ADSCrossRefGoogle Scholar
  61. 61.
    B. Margalit, B.D. Metzger, Astrophys. J. 850, L19 (2017)ADSCrossRefGoogle Scholar
  62. 62.
    E.E. Flanagan, T. Hinderer, Phys. Rev. D 77, 021502 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    T. Damour, A. Nagar, Phys. Rev. D 80, 084035 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    C.C. Moustakidis, T. Gaitanos, C. Margaritis, G.A. Lalazissis, Phys. Rev. C 95, 045801 (2017) 95ADSCrossRefGoogle Scholar
  65. 65.
    Virgo, LIGO Scientific Collaboration (B.P. Abbott et al.), Phys. Rev. Lett. 119, 161101 (2017)ADSCrossRefGoogle Scholar
  66. 66.
    (Virgo, LIGO Scientific Collaboration) B.P. Abbott, arXiv:1805.11581 (2018)Google Scholar
  67. 67.
    L. Lindblom, Phys. Rev. D 82, 103011 (2010) arXiv:1009.0738ADSCrossRefGoogle Scholar
  68. 68.
    A. Kurkela, P. Romatschke, A. Vuorinen, Phys. Rev. D 81, 105021 (2010) arXiv:0912.1856ADSCrossRefGoogle Scholar
  69. 69.
    D. Radice, A. Perego, F. Zappa, S. Bernuzzi, Astrophys. J. 852, L29 (2018)ADSCrossRefGoogle Scholar
  70. 70.
    D. Radice, L. Dai, arXiv:1810.12917 (2018)Google Scholar
  71. 71.
    M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Tanaka, Phys. Rev. D 96, 123012 (2017)ADSCrossRefGoogle Scholar
  72. 72.
    L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. 852, L25 (2018)ADSCrossRefGoogle Scholar
  73. 73.
    A.L. Watts et al., Sci. China Phys. Mech. Astron. 62, 29503 (2019)ADSCrossRefGoogle Scholar
  74. 74.
    C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, Université de Lyon, Université Claude Bernard Lyon 1Villeurbanne CedexFrance
  3. 3.Institute for Nuclear TheoryUniversity of WashingtonSeattleUSA
  4. 4.JINA-CEEMichigan State UniversityEast LansingUSA

Personalised recommendations