Advertisement

Radioactive beams and inverse kinematics: Probing the quantal texture of the nuclear vacuum

  • F. Barranco
  • G. PotelEmail author
  • E. Vigezzi
  • R. A. Broglia
Regular Article - Theoretical Physics
  • 34 Downloads

Abstract.

The properties of the quantum electrodynamic (QED) vacuum in general, and of the nuclear vacuum (ground) state in particular, are determined by virtual processes implying the excitation of a photon and of an electron-positron pair in the first case and of, for example, the excitation of a collective quadrupole surface vibration and a particle-hole pair in the nuclear case. Signals of these processes can be detected in the laboratory in terms of what can be considered a nuclear analogue of Hawking radiation. An analogy which extends to other physical processes involving QED vacuum fluctuations like the Lamb shift, pair creation by \(\gamma\)-rays, van der Waals forces and the Casimir effect, to the extent that one concentrates on the eventual outcome resulting by forcing a virtual process to become real, and not on the role of the black hole in defining the event horizon. In the nuclear case, the role of this event is taken over at a microscopic and fully quantum mechanical level, by nuclear probes (reactions) acting on virtual particles of the zero point fluctuations (ZPF) of the nuclear vacuum in a similar irreversible, no-return, fashion as the event horizon does, letting the other particle, entangled with the first one, escape to infinity, and eventually be detected. With this proviso in mind one can posit that the reactions 1H(11Be,10Be(2+;3.37MeV))2H and 1H(11Li,9Li(1/2-;2.69MeV))3H together with the associated \( \gamma\)-decay processes indicate a possible nuclear analogy of Hawking radiation.

References

  1. 1.
    S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    S.W. Hawking, Sci. Am. 236, 34 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    Berndt Müller, Heinrich Peitz, Johann Rafelski, Walter Greiner, Phys. Rev. Lett. 28, 1235 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    J. Rafelski, B. Müller, W. Greiner, Nucl. Phys. B 68, 585 (1974)ADSCrossRefGoogle Scholar
  5. 5.
    Gerhard Soff, Joachim Reinhardt, Berndt Müller, Walter Greiner, Phys. Rev. Lett. 38, 592 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    J. Rafelski, B. Müller, J. Reinhardt, W. Greiner, Probing QED vacuum with heavy ions arXiv:1604.08690v1 (2016)Google Scholar
  7. 7.
    D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, Phys. Rev. Lett. 79, 1626 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Cesim K. Dumlu, Gerald V. Dunne, Phys. Rev. Lett. 104, 250402 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J.Q. Yu, H.Y. Lu, T. Takahashi, R.H. Hu, Z. Gong, W.J. Ma, Y.S. Huang, C.E. Chen, X.Q. Yan, Phys. Rev. Lett. 122, 014802 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    R. Parentani, Phys. Rev. D 61, 027501 (1999)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Willis E. Lamb, Robert C. Retherford, Phys. Rev. 72, 241 (1947)ADSCrossRefGoogle Scholar
  12. 12.
    H.A. Bethe, Phys. Rev. 72, 339 (1947)ADSCrossRefGoogle Scholar
  13. 13.
    Theodore A. Welton, Phys. Rev. 74, 1157 (1948)ADSCrossRefGoogle Scholar
  14. 14.
    Norman M. Kroll, Willis E. Lamb, Phys. Rev. 75, 388 (1949)ADSCrossRefGoogle Scholar
  15. 15.
    J.B. French, V.F. Weisskopf, Phys. Rev. 75, 1240 (1949)ADSCrossRefGoogle Scholar
  16. 16.
    S. Weinberg, The Quantum Theory of Fields, Vol. 1 (Cambridge University Press, Cambridge, 1996)Google Scholar
  17. 17.
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 60, 793 (1948)Google Scholar
  18. 18.
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet. B 51, 793 (1948)Google Scholar
  19. 19.
    H.B.G. Casimir, D. Polder, Phys. Rev. 73, 360 (1948)ADSCrossRefGoogle Scholar
  20. 20.
    R.L. Jaffe, Phys. Rev. D 72, 021301 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    F. London, Z. Phys. 63, 245 (1930)ADSCrossRefGoogle Scholar
  22. 22.
    F. London, Faraday Soc. 33, 8 (1937)CrossRefGoogle Scholar
  23. 23.
    E.M. Lifschitz, J. Exp. Theor. Phys. USSR 29, 94 (1955)Google Scholar
  24. 24.
    J.B. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (Mc Graw-Hill, New York, 1998)Google Scholar
  25. 25.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, New York, 1985)Google Scholar
  26. 26.
    L. Pauling, E.B. Wilson jr., Quantum Mechanics (Dover, New York, 1963)Google Scholar
  27. 27.
    F. Intravaia, The role of surface plasmons in the Casimir effect, arXiv:0706.1184v2 (2007)Google Scholar
  28. 28.
    F. Barranco, R.A. Broglia, G. Gori, E. Vigezzi, P.F. Bortignon, J. Terasaki, Phys. Rev. Lett. 83, 2147 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    J. Terasaki, F. Barranco, R.A. Broglia, E. Vigezzi, P.F. Bortignon, Nucl. Phys. A 697, 127 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    D. Brink, R.A. Broglia, Nuclear Superfluidity (Cambridge University Press, Cambridge, 2005)Google Scholar
  31. 31.
    D. An, K.A. Meissner, R. Penrose, Apparent evidence for Hawking points in the CMB sky, arXiv:1808.01740v1 (2018)Google Scholar
  32. 32.
    J. Steinhauer, Nat. Phys. 12, 959 (2016)CrossRefGoogle Scholar
  33. 33.
    D. Castelvecchi, Nat. News 536, 258 (2016)CrossRefGoogle Scholar
  34. 34.
    S.S. Schweber, QED (Princeton University Press, Princeton, New Jersey, 1994)Google Scholar
  35. 35.
    D.R. Bès, G.G. Dussel, R.A. Broglia, R. Liotta, B.R. Mottelson, Phys. Lett. B 52, 253 (1974)ADSCrossRefGoogle Scholar
  36. 36.
    P.F. Bortignon, R.A. Broglia, D.R. Bès, R. Liotta, Phys. Rep. 30, 305 (1977)ADSCrossRefGoogle Scholar
  37. 37.
    D.R. Bès, G.G. Dussel, R.P.J. Perazzo, H.M. Sofía, Nucl. Phys. A 293, 350 (1977)ADSCrossRefGoogle Scholar
  38. 38.
    R.A. Broglia, P.F. Bortignon, F. Barranco, E. Vigezzi, A. Idini, G. Potel, Phys. Scr. 91, 063012 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    C. Bachelet et al., Phys. Rev. Lett. 100, 182501 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    S. Baroni, M. Armati, F. Barranco, R.A. Broglia, G. Colò, G. Gori, E. Vigezzi, J. Phys. G: Nucl. Part. Phys. 30, 1353 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    G. Potel, A. Idini, F. Barranco, E. Vigezzi, R.A. Broglia, Phys. At. Nucl. 77, 941 (2014)CrossRefGoogle Scholar
  42. 42.
    D.R. Bès, J. Kurchan, The treatment of Collective Coordinates in Many-Body Systems (World Scientific, Singapore, 1990)Google Scholar
  43. 43.
    R.A. Broglia, A. Winther, Heavy Ion Reactions (Westview Press, Boulder, CO., 2004)Google Scholar
  44. 44.
    R.A. Broglia, Heavy ion reaction, Notes of lectures delivered during the academic years 1974--1976 at SUNY, Stony Brook at Brookhaven National Laboratory, and at Niels Bohr Institute, unpublished http://www.mi.infn.it/~vigezzi/HIR/HeavyIonReactions.pdf (1975)
  45. 45.
    F. Barranco, G. Potel, R.A. Broglia, E. Vigezzi, Phys. Rev. Lett. 119, 082501 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    F. Barranco, G. Potel, E. Vigezzi, R.A. Broglia, $d(\chem{{}^9Li},p)$, specific probe of ${}^{10}$Li, paradigm of parity-inverted, soft-dipole isotones with one neutron outside the $N = 6$ closed shell, arXiv:1812.01761Google Scholar
  47. 47.
    F. Barranco, P.F. Bortignon, R.A. Broglia, G. Colò, E. Vigezzi, Eur. Phys. J. A 11, 385 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    I. Tanihata, M. Alcorta, D. Bandyopadhyay, R. Bieri, L. Buchmann, B. Davids, N. Galinski, D. Howell, W. Mills, S. Mythili, R. Openshaw, E. Padilla-Rodal, G. Ruprecht, G. Sheffer, A.C. Shotter, M. Trinczek, P. Walden, H. Savajols, T. Roger, M. Caamano, W. Mittig, P. Roussel-Chomaz, R. Kanungo, A. Gallant, M. Notani, G. Savard, I.J. Thompson, Phys. Rev. Lett. 100, 192502 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    G. Potel, F. Barranco, E. Vigezzi, R.A. Broglia, Phys. Rev. Lett. 105, 172502 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    C. Mahaux, P.F. Bortignon, R.A. Broglia, C.H. Dasso, Phys. Rep. 120, 1 (1985)ADSCrossRefGoogle Scholar
  51. 51.
    R.A. Broglia, G. Coló, G. Onida, H.E. Roman, Solid State Physics of Finite Systems: Metal Clusters, Fullerenes, Atomic Wires (Springer Verlag, Berlin, Heidelberg, 2004)Google Scholar
  52. 52.
    P.D. Nation, J.R. Johansson, M.P. Blencowe, Franco Nori, Rev. Mod. Phys. 84, 1 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    R.M. Nugayev, Commun. Math. Phys. 111, 579 (1987)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    I. Tanihata, H. Savajols, R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    N. Keeley, N. Alamanos, V. Lapoux, Phys. Rev. C 69, 064604 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    Tohru Motobayashi, Hiroyoshi Sakurai, Prog. Theor. Exp. Phys. 2012, 03C001 (2012)Google Scholar
  57. 57.
    J.S. Winfield, S. Fortier, W.N. Catford, S. Pita, N.A. Orr, J. Van de Wiele, Y. Blumenfeld, R. Chapman, S.P.G. Chappell, N.M. Clarke, N. Curtis, M. Freer, S. Galès, H. Langevin-Joliot, H. Laurent, I. Lhenry, J.M. Maison, P. Roussel-Chomaz, M. Shawcross, K. Spohr, T. Suomijärvi, A. de Vismes, Nucl. Phys. A 683, 48 (2001)ADSCrossRefGoogle Scholar
  58. 58.
    A. Pais, Inward Bound (Oxford University Press, Oxford, 1986)Google Scholar
  59. 59.
    E. Schrödinger, Math. Proc. Camb. Philos. Soc. 31, 555 (1935)ADSCrossRefGoogle Scholar
  60. 60.
    P.W. Anderson, Special effects in superconductivity in The Many-Body Problem, Vol. 2, edited by E.R. Caianello (Academic Press, New York, 1964) p. 113Google Scholar
  61. 61.
    W.L. Mc Millan, J.M. Rowell, Tunneling and strong-coupling superconductivity, in Superconductivity, Vol. 1, edited by R.D. Parks (Marcel Dekker, Inc., New York, 1969) p. 561Google Scholar
  62. 62.
    M. Cavallaro, M. De Napoli, F. Cappuzzello, S.E.A. Orrigo, C. Agodi, M. Bondí, D. Carbone, A. Cunsolo, B. Davids, T. Davinson, A. Foti, N. Galinski, R. Kanungo, H. Lenske, C. Ruiz, A. Sanetullaev, Phys. Rev. Lett. 118, 012701 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    H.T. Fortune, G.-B. Liu, D.E. Alburger, Phys. Rev. C 50, 1355 (1994)ADSCrossRefGoogle Scholar
  64. 64.
    K.T. Schmitt, K.L. Jones, S. Ahn, D.W. Bardayan, A. Bey, J.C. Blackmon, S.M. Brown, K.Y. Chae, K.A. Chipps, J.A. Cizewski, K.I. Hahn, J.J. Kolata, R.L. Kozub, J.F. Liang, C. Matei, M. Matos, D. Matyas, B. Moazen, C.D. Nesaraja, F.M. Nunes, P.D. O’Malley, S.D. Pain, W.A. Peters, S.T. Pittman, A. Roberts, D. Shapira, J.F. Shriner, M.S. Smith, I. Spassova, D.W. Stracener, N.J. Upadhyay, A.N. Villano, G.L. Wilson, Phys. Rev. C 88, 064612 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    G. Bassani, N.M. Hintz, C.D. Kavaloski, J.R. Maxwell, G.M. Reynolds, Phys. Rev. B 139, 830 (1965)ADSCrossRefGoogle Scholar
  66. 66.
    M.J. Bechara, O. Dietzsch, Phys. Rev. C 12, 90 (1975)ADSCrossRefGoogle Scholar
  67. 67.
    D. Montanari, L. Corradi, S. Szilner, G. Pollarolo, E. Fioretto, G. Montagnoli, F. Scarlassara, A.M. Stefanini, S. Courtin, A. Goasduff, F. Haas, D. Jelavić Malenica, C. Michelagnoli, T. Mijatović, N. Soić, C.A. Ur, M. Varga Pajtler, Phys. Rev. Lett. 113, 052501 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    D. Montanari, L. Corradi, S. Szilner, G. Pollarolo, A. Goasduff, T. Mijatović, D. Bazzacco, B. Birkenbach, A. Bracco, L. Charles, S. Courtin, P. Désesquelles, E. Fioretto, A. Gadea, A. Görgen, A. Gottardo, J. Grebosz, F. Haas, H. Hess, D. Jelavić Malenica, A. Jungclaus, M. Karolak, S. Leoni, A. Maj, R. Menegazzo, D. Mengoni, C. Michelagnoli, G. Montagnoli, D.R. Napoli, A. Pullia, F. Recchia, P. Reiter, D. Rosso, M.D. Salsac, F. Scarlassara, P.-A. Söderström, N. Soić, A.M. Stefanini, O. Stezowski, Ch. Theisen, C.A. Ur, J.J. Valiente-Dobón, M. Varga Pajtler, Phys. Rev. C 93, 054623 (2016)ADSCrossRefGoogle Scholar
  69. 69.
    F. Barranco, R.A. Broglia, G. Colò, G. Gori, E. Vigezzi, P.F. Bortignon, Eur. Phys. J. A 21, 57 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    S.R. Lundeen, F.M. Pipkin, Phys. Rev. Lett. 46, 232 (1981)ADSCrossRefGoogle Scholar
  71. 71.
    A. Pais, The Genius of Science (Oxford University Press, Oxford, 2000)Google Scholar
  72. 72.
    G. Potel, A. Idini, F. Barranco, E. Vigezzi, R.A. Broglia, Rep. Prog. Phys. 76, 106301 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II (Benjamin, New York, 1975)Google Scholar
  74. 74.
    B.R. Holstein, Weak Interaction In Nuclei (Princeton University Press, New Jersey, 1989)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • F. Barranco
    • 1
  • G. Potel
    • 2
    Email author
  • E. Vigezzi
    • 3
  • R. A. Broglia
    • 4
    • 5
  1. 1.Departamento de Fìsica Aplicada III, Escuela Superior de IngenierosUniversidad de SevillaSevillaSpain
  2. 2.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  3. 3.INFN Sezione di MilanoMilanoItaly
  4. 4.The Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  5. 5.Dipartimento di FisicaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations