Advertisement

Nuclear response in a finite-temperature relativistic framework

  • Elena LitvinovaEmail author
  • Herlik Wibowo
Regular Article - Theoretical Physics
  • 14 Downloads
Part of the following topical collections:
  1. Giant, Pygmy, Pairing Resonances and Related Topics

Abstract.

A thermal extension of the relativistic nuclear field theory is formulated for the nuclear response. The Bethe-Salpeter equation (BSE) with the time-dependent kernel for the particle-hole response is treated within the Matsubara Green’s function formalism. We show that, with the help of a temperature-dependent projection operator on the subspace of the imaginary time (time blocking), it is possible to reduce the BSE for the nuclear response function to a single frequency variable equation also at finite temperature. The approach is implemented self-consistently in the framework of quantum hadrodynamics based on the meson-nucleon Lagrangian. The method is applied to the monopole, dipole and quadrupole response of 48Ca and to the dipole response of the tin isotopes 100, 120, 132Sn, in particular, to a study of the evolution of nuclear collective oscillations with temperature. The article is dedicated to the memory of Pier Francesco Bortignon and devoted to the developments related to his pioneering ideas.

References

  1. 1.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 1 (World Scientific, 1969)Google Scholar
  2. 2.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, New York, 1975)Google Scholar
  3. 3.
    R.A. Broglia, P.F. Bortignon, Phys. Lett. B 65, 221 (1976)ADSGoogle Scholar
  4. 4.
    P.F. Bortignon, R. Broglia, D. Bes, R. Liotta, Phys. Rep. 30, 305 (1977)ADSGoogle Scholar
  5. 5.
    P.F. Bortignon, R.A. Broglia, D.R. Bes, Phys. Lett. B 76, 153 (1978)ADSGoogle Scholar
  6. 6.
    P.F. Bortignon, R.A. Broglia, Phys. Lett. B 102, 303 (1981)ADSGoogle Scholar
  7. 7.
    G. Bertsch, P. Bortignon, R. Broglia, Rev. Mod. Phys. 55, 287 (1983)ADSGoogle Scholar
  8. 8.
    C. Mahaux, P. Bortignon, R. Broglia, C. Dasso, Phys. Rep. 120, 1 (1985)ADSGoogle Scholar
  9. 9.
    P. Bortignon, R. Broglia, G. Bertsch, J. Pacheco, Nucl. Phys. A 460, 149 (1986)ADSGoogle Scholar
  10. 10.
    P.F. Bortignon, C.H. Dasso, Phys. Rev. C 56, 574 (1997)ADSGoogle Scholar
  11. 11.
    G. Colò, P.F. Bortignon, Nucl. Phys. A 696, 427 (2001)ADSGoogle Scholar
  12. 12.
    R. Broglia, P. Bortignon, A. Bracco, Prog. Part. Nucl. Phys. 28, 517 (1992)ADSGoogle Scholar
  13. 13.
    N. Giovanardi, P.F. Bortignon, R.A. Broglia, W. Huang, Phys. Rev. Lett. 77, 24 (1996)ADSGoogle Scholar
  14. 14.
    P. Donati, N. Giovanardi, P.F. Bortignon, R.A. Broglia, Phys. Lett. B 383, 15 (1996)ADSGoogle Scholar
  15. 15.
    N. Giovanardi, P.F. Bortignon, R.A. Broglia, Nucl. Phys. A 641, 95 (1998)ADSGoogle Scholar
  16. 16.
    W. Ormand, P. Bortignon, R. Broglia, T. Døssing, B. Lauritzen, Nucl. Phys. A 519, 61 (1990)ADSGoogle Scholar
  17. 17.
    W.E. Ormand, P.F. Bortignon, R.A. Broglia, Phys. Rev. Lett. 77, 607 (1996)ADSGoogle Scholar
  18. 18.
    P.F. Bortignon, A. Bracco, R.A. Broglia, Giant Resonances: Nuclear Structure at Finite Temperature, Vol. 10 of Contemporary Concepts in Physics (CRC Press, 1998)Google Scholar
  19. 19.
    P.F. Bortignon, R.A. Broglia, Eur. Phys. J. A 52, 280 (2016)ADSGoogle Scholar
  20. 20.
    P.F. Bortignon, R.A. Broglia, Eur. Phys. J. A 52, 64 (2016)ADSGoogle Scholar
  21. 21.
    R.A. Broglia, P.F. Bortignon, F. Barranco, E. Vigezzi, A. Idini, G. Potel, Phys. Scr. 91, 063012 (2016)ADSGoogle Scholar
  22. 22.
    G. Coló, P.F. Bortignon, G. Bocchi, Phys. Rev. C 95, 034303 (2017)ADSGoogle Scholar
  23. 23.
    J. Gaardhøje, C. Ellegaard, B. Herskind, S. Steadman, Phys. Rev. Lett. 53, 148 (1984)ADSGoogle Scholar
  24. 24.
    J. Gaardhøje, C. Ellegaard, B. Herskind, R. Diamond, M. Deleplanque, G. Dines, A. Macchiavelli, F. Stephens, Phys. Rev. Lett. 56, 1783 (1986)ADSGoogle Scholar
  25. 25.
    A. Bracco, J. Gaardhøje, A. Bruce, J. Garrett, B. Herskind, M. Pignanelli, D. Barneoud, H. Nifenecker, J. Pinston, C. Ristori et al., Phys. Rev. Lett. 62, 2080 (1989)ADSGoogle Scholar
  26. 26.
    E. Ramakrishnan, T. Baumann, A. Azhari, R. Kryger, R. Pfaff, M. Thoennessen, S. Yokoyama, J. Beene, M. Halbert, P. Mueller et al., Phys. Rev. Lett. 76, 2025 (1996)ADSGoogle Scholar
  27. 27.
    M. Mattiuzzi, A. Bracco, F. Camera, W.E. Ormand, J.J. Gaardhøje, A. Maj, B. Million, M. Pignanelli, T. Tveter, Nucl. Phys. A 612, 262 (1997)ADSGoogle Scholar
  28. 28.
    P. Heckman, D. Bazin, J. Beene, Y. Blumenfeld, M. Chromik, M. Halbert, J. Liang, E. Mohrmann, T. Nakamura, A. Navin et al., Phys. Lett. B 555, 43 (2003)ADSGoogle Scholar
  29. 29.
    D. Santonocito, Y. Blumenfeld, in Dynamics and Thermodynamics with Nuclear Degrees of Freedom (Springer, 2006) pp. 183--202Google Scholar
  30. 30.
    O. Wieland et al., Phys. Rev. Lett. 97, 012501 (2006)ADSGoogle Scholar
  31. 31.
    A. Bracco, F. Camera, O. Wieland, W.E. Ormand, Mod. Phys. Lett. A 22, 2479 (2007)ADSGoogle Scholar
  32. 32.
    D. Savran, T. Aumann, A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013)ADSGoogle Scholar
  33. 33.
    J. Isaak et al., Phys. Lett. B 788, 225 (2019)ADSGoogle Scholar
  34. 34.
    A. Voinov, E. Algin, U. Agvaanluvsan, T. Belgya, R. Chankova, M. Guttormsen, G. Mitchell, J. Rekstad, A. Schiller, S. Siem, Phys. Rev. Lett. 93, 142504 (2004)ADSGoogle Scholar
  35. 35.
    M. Wiedeking, L. Bernstein, M. Krtička, D. Bleuel, J. Allmond, M. Basunia, J. Burke, P. Fallon, R. Firestone, B. Goldblum et al., Phys. Rev. Lett. 108, 162503 (2012)ADSGoogle Scholar
  36. 36.
    M. Mumpower, R. Surman, G. McLaughlin, A. Aprahamian, Prog. Part. Nucl. Phys. 86, 86 (2016)ADSGoogle Scholar
  37. 37.
    F. Minato, K. Hagino, Phys. Rev. C 80, 065808 (2009)ADSGoogle Scholar
  38. 38.
    A.A. Dzhioev, A.I. Vdovin, V.Yu. Ponomarev et al., Phys. Rev. C 81, 015804 (2010)ADSGoogle Scholar
  39. 39.
    Y.F. Niu, N. Paar, D. Vretenar et al., Phys. Rev. C 83, 045807 (2011)ADSGoogle Scholar
  40. 40.
    A. Aprahamian, in Proceedings for the FRIB Theory Alliance workshop “FRIB and the GW170817 kilonova”, 16–27 July 2018, Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI USA, arXiv:1809.00703Google Scholar
  41. 41.
    P. Ring, L.M. Robledo, J.L. Egido, M. Faber, Nucl. Phys. A 419, 261 (1984)ADSGoogle Scholar
  42. 42.
    Y.F. Niu, N. Paar, D. Vretenar, J. Meng, Phys. Lett. B 681, 315 (2009)ADSGoogle Scholar
  43. 43.
    E. Yüksel, G. Colò, E. Khan, Y.F. Niu, K. Bozkurt, Phys. Rev. C 96, 024303 (2017)ADSGoogle Scholar
  44. 44.
    E. Litvinova, S. Kamerdzhiev, V. Tselyaev, Phys. At. Nucl. 66, 558 (2003)Google Scholar
  45. 45.
    E. Khan, N. Van Giai, M. Grasso, Nucl. Phys. A 731, 311 (2004)ADSGoogle Scholar
  46. 46.
    E. Litvinova, N. Belov, Phys. Rev. C 88, 031302 (2013)ADSGoogle Scholar
  47. 47.
    J. Dukelsky, G. Röpke, P. Schuck, Nucl. Phys. A 628, 17 (1998)ADSGoogle Scholar
  48. 48.
    D. Lacroix, P. Chomaz, S. Ayik, Phys. Rev. C 58, 2154 (1998)ADSGoogle Scholar
  49. 49.
    S. Adachi, P. Schuck, Nucl. Phys. A 496, 485 (1989)ADSGoogle Scholar
  50. 50.
    C. Yannouleas, S. Jang, Nucl. Phys. A 455, 40 (1986)ADSGoogle Scholar
  51. 51.
    A.N. Storozhenko, A.I. Vdovin, A. Ventura, A.I. Blokhin, Phys. Rev. C 69, 064320 (2004)ADSGoogle Scholar
  52. 52.
    D. Kusnezov, Y. Alhassid, K. Snover, Phys. Rev. Lett. 81, 542 (1998)ADSGoogle Scholar
  53. 53.
    E. Litvinova, P. Ring, Phys. Rev. C 73, 044328 (2006)ADSGoogle Scholar
  54. 54.
    E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 75, 064308 (2007)ADSGoogle Scholar
  55. 55.
    E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 78, 014312 (2008)ADSGoogle Scholar
  56. 56.
    E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 88, 044320 (2013)ADSGoogle Scholar
  57. 57.
    E. Litvinova, Phys. Rev. C 91, 034332 (2015)ADSGoogle Scholar
  58. 58.
    E. Litvinova, Phys. Lett. B 755, 138 (2016)ADSGoogle Scholar
  59. 59.
    C. Robin, E. Litvinova, Eur. Phys. J. A 52, 205 (2016)ADSGoogle Scholar
  60. 60.
    C. Robin, E. Litvinova, Phys. Rev. C 98, 051301 (2018)ADSGoogle Scholar
  61. 61.
    E. Litvinova, P. Ring, V. Tselyaev, K. Langanke, Phys. Rev. C 79, 054312 (2009)ADSGoogle Scholar
  62. 62.
    E. Litvinova, H. Loens, K. Langanke, G. Martinez-Pinedo, T. Rauscher, P. Ring, F.K. Thielemann, V. Tselyaev, Nucl. Phys. A 823, 26 (2009)ADSGoogle Scholar
  63. 63.
    E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. Lett. 105, 022502 (2010)ADSGoogle Scholar
  64. 64.
    J. Endres, E. Litvinova, D. Savran, P.A. Butler, M.N. Harakeh, S. Harissopulos, R.D. Herzberg, R. Krücken, A. Lagoyannis, N. Pietralla et al., Phys. Rev. Lett. 105, 212503 (2010)ADSGoogle Scholar
  65. 65.
    A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C.A. Bertulani, J. Carter, M. Dozono, H. Fujita, K. Fujita et al., Phys. Rev. Lett. 107, 062502 (2011)ADSGoogle Scholar
  66. 66.
    R. Massarczyk, R. Schwengner, F. Dönau, E. Litvinova, G. Rusev, R. Beyer, R. Hannaske, A. Junghans, M. Kempe, J.H. Kelley et al., Phys. Rev. C 86, 014319 (2012)ADSGoogle Scholar
  67. 67.
    E. Lanza, A. Vitturi, E. Litvinova, D. Savran, Phys. Rev. C 89, 041601 (2014)ADSGoogle Scholar
  68. 68.
    I. Poltoratska, R. Fearick, A. Krumbholz, E. Litvinova, H. Matsubara, P. von Neumann-Cosel, V.Y. Ponomarev, A. Richter, A. Tamii, Phys. Rev. C 89, 054322 (2014)ADSGoogle Scholar
  69. 69.
    B. Özel-Tashenov, J. Enders, H. Lenske, A. Krumbholz, E. Litvinova, P. von Neumann-Cosel, I. Poltoratska, A. Richter, G. Rusev, D. Savran et al., Phys. Rev. C 90, 024304 (2014)ADSGoogle Scholar
  70. 70.
    I.A. Egorova, E. Litvinova, Phys. Rev. C 94, 034322 (2016)ADSGoogle Scholar
  71. 71.
    E. Litvinova, H. Wibowo, Phys. Rev. Lett. 121, 082501 (2018)ADSGoogle Scholar
  72. 72.
    H. Wibowo, E. Litvinova, Phys. Rev. C 100, 024307 (2019) arXiv:1810.01456ADSGoogle Scholar
  73. 73.
    H.M. Sommermann, Ann. Phys. 151, 163 (1983)ADSGoogle Scholar
  74. 74.
    D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)ADSGoogle Scholar
  75. 75.
    G. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997)ADSGoogle Scholar
  76. 76.
    A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Pergamon Press Ltd., 1965)Google Scholar
  77. 77.
    P. Schuck, M. Tohyama, Eur. Phys. J. A 52, 307 (2016)ADSGoogle Scholar
  78. 78.
    S.P. Kamerdzhiev, G.Y. Tertychny, V.I. Tselyaev, Phys. Part. Nucl. 28, 134 (1997)Google Scholar
  79. 79.
    V. Tselyaev, Sov. J. Nucl. Phys. 50, 780 (1989)Google Scholar
  80. 80.
    V.I. Tselyaev, Phys. Rev. C 88, 054301 (2013)ADSGoogle Scholar
  81. 81.
    E. Litvinova, V. Tselyaev, Phys. Rev. C 75, 054318 (2007)ADSGoogle Scholar
  82. 82.
    G. Lalazissis, Phys. Rev. C 55, 540 (1997)ADSGoogle Scholar
  83. 83.
    M.N. Harakeh, A. Van der Woude, Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation (Oxford University Press, 2001)Google Scholar
  84. 84.
    U. Garg, G. Coló, Prog. Part. Nucl. Phys. 101, 55 (2018)ADSGoogle Scholar
  85. 85.
    X. Roca-Maza, N. Paar, Prog. Part. Nucl. Phys. 101, 96 (2018) arXiv:1804.06256ADSGoogle Scholar
  86. 86.
    S. Fultz, B. Berman, J. Caldwell, R. Bramblett, M. Kelly, Phys. Rev. 186, 1255 (1969)ADSGoogle Scholar
  87. 87.
    P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A 427, 278 (1984)ADSGoogle Scholar
  88. 88.
    P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A 436, 265 (1985)ADSGoogle Scholar
  89. 89.
    R. Lisboa, M. Malheiro, B.V. Carlson, Phys. Rev. C 93, 024321 (2016)ADSGoogle Scholar
  90. 90.
    W. Zhang, Y. Niu, Phys. Rev. C 96, 054308 (2017) 97ADSGoogle Scholar
  91. 91.
    L. Landau, Sov. J. Exp. Theor. Phys. 5, 101 (1957)Google Scholar
  92. 92.
    M. Barranco, A. Polls, J. Martorell, Nucl. Phys. A 444, 445 (1985)ADSGoogle Scholar
  93. 93.
    V.I. Tselyaev, Phys. Rev. C 75, 024306 (2007)ADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsWestern Michigan UniversityKalamazooUSA
  2. 2.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA

Personalised recommendations