Advertisement

Production of light nuclei at thermal freezeout in ultrarelativistic heavy-ion collisions

  • Xinyuan Xu
  • Ralf RappEmail author
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract.

We revisit the problem of the production of light atomic nuclei in ultrarelativistic heavy-ion collisions. While their production systematics is well produced by hadro-chemical freezeout at temperatures near the QCD pseudo-critical temperature, their small binding energies of a few MeV per nucleon suggest that they cannot survive as bound states under these conditions. Here, we adopt the concept of effective chemical potentials in the hadronic evolution from chemical to thermal freezeout (at typically \( T_{\mathrm{fo}} \simeq 100\) MeV), which, despite frequent elastic rescatterings in hadronic matter, conserves the effective numbers of particles which are stable under strong interactions, most notably pions, kaons and nucleons. It turns out that the large chemical potentials that build up for antibaryons result in thermal abundances of light nuclei and antinuclei, formed at thermal freezeout, which essentially agree with the ones evaluated at chemical freezeout. Together with their transverse-momentum spectra, which also indicate a kinetic freezeout near \( T_{\mathrm{fo}}\) , this provides a natural explanation for their production systematics without postulating their survival at high temperatures.

References

  1. 1.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 034909 (2009)CrossRefGoogle Scholar
  2. 2.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    F. Bellini, A.P. Kalweit, arXiv:1807.05894 [hep-ph]Google Scholar
  4. 4.
    J. Chen, D. Keane, Y.G. Ma, A. Tang, Z. Xu, Phys. Rep. 760, 1 (2018)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stocker, Phys. Lett. B 697, 203 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, J. Phys.: Conf. Ser. 779, 012012 (2017)Google Scholar
  7. 7.
    A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    J.I. Kapusta, Phys. Rev. C 21, 1301 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    R. Scheibl, U.W. Heinz, Phys. Rev. C 59, 1585 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    L. Zhu, C.M. Ko, X. Yin, Phys. Rev. C 92, 064911 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    S. Bazak, S. Mrowczynski, Mod. Phys. Lett. A 33, 1850142 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    P. Danielewicz, P. Schuck, Phys. Lett. B 274, 268 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    S. Mrowczynski, J. Phys. G 13, 1089 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark Gluon Plasma, Vol. 3, edited by R.C. Hwa, X.-N. Wang (World Scientific, Singapore, 2004) pp. 491--599Google Scholar
  15. 15.
    F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Phys. Lett. B 673, 142 (2009) 678ADSCrossRefGoogle Scholar
  18. 18.
    H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B 378, 95 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    C.M. Hung, E. Shuryak, Phys. Rev. C 57, 1891 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    R. Rapp, Phys. Rev. C 66, 017901 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    D. Teaney, nucl-th/0204023Google Scholar
  22. 22.
    T. Hirano, K. Tsuda, Phys. Rev. C 66, 054905 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    R. Rapp, E.V. Shuryak, Phys. Rev. Lett. 86, 2980 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    G.D. Yen, M.I. Gorenstein, W. Greiner, S.N. Yang, Phys. Rev. C 56, 2210 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    S. Typel, G. Ropke, T. Klahn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    R. Rapp, Adv. High Energy Phys. 2013, 148253 (2013)CrossRefGoogle Scholar
  27. 27.
    STAR Collaboration (B.I. Abelev), arXiv:0909.0566 [nucl-ex]Google Scholar
  28. 28.
    STAR Collaboration (H. Agakishiev et al.), Nature 473, 353 (2011) 475ADSCrossRefGoogle Scholar
  29. 29.
    STAR Collaboration (N. Yu), Nucl. Phys. A 967, 788 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    STAR Collaboration (P. Liu), Nucl. Phys. A 982, 811 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    S. Chatterjee, B. Mohanty, Phys. Rev. C 90, 034908 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 024917 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    ALICE Collaboration (S. Acharya et al.), Nucl. Phys. A 971, 1 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    B. Dönigus, private communication (2019)Google Scholar
  35. 35.
    E. Schnedermann, J. Sollfrank, U.W. Heinz, Phys. Rev. C 48, 2462 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 94, 034908 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    ALICE Collaboration (M. Puccio), Nucl. Phys. A 982, 447 (2019)ADSCrossRefGoogle Scholar
  38. 38.
    L. Ravagli, R. Rapp, Phys. Lett. B 655, 126 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    D. Oliinychenko, L.G. Pang, H. Elfner, V. Koch, arXiv:1809.03071 [hep-ph]Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cyclotron Institute and Department of Physics & AstronomyTexas A&M UniversityCollege StationUSA
  2. 2.Department of PhysicsUniversity of Science and Technology of ChinaHefei, AnhuiChina

Personalised recommendations