Advertisement

High Efficiency Total Absorption Spectrometer HECTOR for capture reaction measurements

  • C. S. Reingold
  • O. Olivas-Gomez
  • A. SimonEmail author
  • J. Arroyo
  • M. Chamberlain
  • J. Wurzer
  • A. Spyrou
  • F. Naqvi
  • A. C. Dombos
  • A. Palmisano
  • T. Anderson
  • A. M. Clark
  • B. Frentz
  • M. R. Hall
  • S. L. Henderson
  • S. Moylan
  • D. Robertson
  • M. Skulski
  • E. Stech
  • S. Y. Strauss
  • W. P. Tan
  • B. Vande Kolk
Special Article - New Tools and Techniques
  • 2 Downloads

Abstract.

Proper understanding of the stellar nucleosynthesis processes requires information on a variety of capture reaction cross sections. Since these cross sections are typically very low, they require efficient measurement techniques. The High Efficiency Total Absorption Spectrometer (HECTOR) was designed to measure capture cross sections relevant for astrophysical processes. HECTOR is a \( \gamma\) -summing detector comprised of 16 separate NaI(Tl) segments. The detector design is presented, as well as a detailed study of the detector's summing efficiency and analysis procedure. The results of the commissioning of HECTOR are presented. The resonance strengths of the well-known resonances in the 27Al \( (\mathrm{p},\gamma)\)28Si reaction measured with HECTOR are compared with the literature values.

References

  1. 1.
    A. Sauerwein, J. Endres, L. Netterdon, A. Zilges, V. Foteinou, G. Provatas, T. Konstantinopoulos, M. Axiotis, S.F. Ashley, S. Harissopulos, T. Rauscher, Phys. Rev. C 86, 035802 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    S. Galanopoulos, P. Demetriou, M. Kokkoris, S. Harissopulos, R. Kunz, M. Fey, J.W. Hammer, G. Gyürky, Z. Fülop, E. Somorjai, S. Goriely, Phys. Rev. C 67, 015801 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    S. Harissopulos, A. Spyrou, A. Lagoyannis, M. Axiotis, P. Demetriou, J.W. Hammer, R. Kunz, H.W. Becker, Phys. Rev. C 87, 025806 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    M. Famiano, R.S. Kodikara, B.M. Giacherio, V.G. Subramanian, A. Kayani, Nucl. Phys. A 802, 26 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    N. Özkan, A. Murphy, R. Boyd, A. Cole, M. Famiano, R. Gü, Nucl. Phys. A 710, 469 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    R.T. Güray, N. Özkan, C. Yalçin, T. Rauscher, G. Gyürky, J. Farkas, Z. Fülöp, Z. Halász, E. Somorjai, Phys. Rev. C 91, 055809 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    P. Tsagari, M. Kokkoris, E. Skreti, A.G. Karydas, S. Harissopulos, T. Paradellis, P. Demetriou, Phys. Rev. C 64, 015802 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    A. Spyrou, H.W. Becker, A. Lagoyannis, S. Harissopulos, C. Rolfs, Phys. Rev. C 76, 015802 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    S. Yamamoto, Y. Fujita, T. Shibata, S. Selvi, Nucl. Instrum. Methods A 249, 484 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    C. Casella, H. Costantini, A. Lemut, B. Limata, D. Bemmerer, R. Bonetti, C. Broggini, L. Campajola, P. Cocconi, P. Corvisiero et al., Nucl. Instrum. Methods A 489, 160 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    K. Wisshak, K. Guber, F. Käppeler, J. Krisch, H. Müller, G. Rupp, F. Voss, Nucl. Instrum. Methods A 292, 595 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    A. Simon, S. Quinn, A. Spyrou, A. Battaglia, I. Beskin, A. Best, B. Bucher, M. Couder, P. DeYoung, X. Fang et al., Nucl. Instrum. Methods Phys. Res. A 703, 16 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S. Quinn, A. Spyrou, A. Simon, A. Battaglia, M. Bowers, B. Bucher, C. Casarella, M. Couder, P. DeYoung, A. Dombos et al., Nucl. Instrum. Methods Phys. Res. A 757, 62 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    StGobain Crystals, https://www.crystals.saint-gobain.com (2019)
  15. 15.
    C. Prokop, S. Liddick, B. Abromeit, A. Chemey, N. Larsen, S. Suchyta, J. Tompkins, Nucl. Instrum. Methods A 741, 163 (2014)ADSCrossRefGoogle Scholar
  16. 16.
  17. 17.
    J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    P.M. Endt, Nucl. Phys. A 633, 1 (1998)ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    J. Brenneisen, D. Grathwohl, M. Lickert, R. Ott, R. Höpke, J. Schmälzlin, B. Wildenthal, Z. Phys. A 352, 149 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    M. Mayer, in Report IPP 9/113, Max-Planck-Institut für Plasmaphysik (Garching, Germany, 1997)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • C. S. Reingold
    • 1
  • O. Olivas-Gomez
    • 1
  • A. Simon
    • 1
    Email author
  • J. Arroyo
    • 1
  • M. Chamberlain
    • 1
  • J. Wurzer
    • 1
  • A. Spyrou
    • 2
    • 3
  • F. Naqvi
    • 1
  • A. C. Dombos
    • 2
    • 1
  • A. Palmisano
    • 2
    • 3
  • T. Anderson
    • 1
  • A. M. Clark
    • 1
  • B. Frentz
    • 1
  • M. R. Hall
    • 1
  • S. L. Henderson
    • 1
  • S. Moylan
    • 1
  • D. Robertson
    • 1
  • M. Skulski
    • 1
  • E. Stech
    • 1
  • S. Y. Strauss
    • 1
  • W. P. Tan
    • 1
  • B. Vande Kolk
    • 1
  1. 1.Department of Physics and Joint Institute for Nuclear AstrophysicsUniversity of Notre DameNotre DameUSA
  2. 2.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  3. 3.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA

Personalised recommendations