Advertisement

16O within the Semimicroscopic Algebraic Cluster Model and the importance of the Pauli Exclusion Principle

  • P. O. HessEmail author
  • J. R. M. Berriel-Aguayo
  • L. J. Chávez-Nuñez
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract.

The Semimicroscopic Algebraic Cluster Model (SACM) is applied to 16O, assumed to consist of a system of four \(\alpha\)-clusters. For the 4-\(\alpha\) cluster system we take the model space already obtained in the past, which observes the Pauli Exclusion Principle (PEP) and is symmetric under permutation of the \(4\alpha\)-particles. A phenomenological Hamiltonian is used. The spectrum and transition values are determined. One of the main objectives is to test the importance of the Pauli Exclusion Principle (PEP), comparing the results with the Algebraic Cluster Model (ACM), which does not include the PEP, and claims that for the ground state the 16O shows evidence of a tetrahedral structure which can be explained easily by symmetry arguments. We show that the PEP is very important and cannot be neglected, otherwise it leads to a wrong interpretation of the band structure and to too many states at low energy, especially to an accumulation of parity doublets.

References

  1. 1.
    K.D. Launey, T. Dytrych, J.P. Draayer, Prog. Part. Nucl. Phys. 89, 101 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    T. Dytrych, Evidence for Symplectic Symmetry in ab initio no-core Shell Model Results, PhD Thesis, Lousiana State University (2008)Google Scholar
  3. 3.
    P. Schuck, J. Phys.: Conf. Ser. 436, 012065 (2013)Google Scholar
  4. 4.
    P. Schuck, Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki, T. Yamada, Phys. Scr. 91, 123001 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Funaki, Phys. Rev. C 97, 021304(R) (2018)ADSCrossRefGoogle Scholar
  6. 6.
    A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    M. Freer, Rep. Prog. Phys. 70, 2149 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, U.-G. Meissner, Rev. Mod. Phys. 90, 03500 (2018)CrossRefGoogle Scholar
  9. 9.
    Y. Funaki, M. Girod, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, T. Yamada, J. Phys. G: Nucl. Part. Phys. 37, 064012 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    P. Schuck, AIP Conf. Proc. 2038, 020002 (2018)CrossRefGoogle Scholar
  11. 11.
    R. Bijker, F. Iachello, Phus. Rev. Lett. 112, 152501 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    R. Bijker, F. Iachello, Nucl. Phys. A 957, 154 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    R. Bijker, F. Iachello, Ann. Phys. (N.Y.) 298, 334 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Marín-Lámbarri, R. Bijker, M. Freer et al., Phys. Rev. Lett. 113, 012502 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    P.O. Hess, Eur. Phys. J. A 54, 32 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    J. Cseh, Phys. Lett. B 281, 173 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    J. Cseh, G. Lévai, Ann. Phys. (N.Y.) 230, 165 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954)ADSCrossRefGoogle Scholar
  19. 19.
    V.C. Aguilera-Navarro, M. Moshinsky, P. Kramer, Ann. Phys. 54, 379 (1969)ADSCrossRefGoogle Scholar
  20. 20.
    M. Moshinsky, Y. Smirnoc, The Harmonic Oscillator in Modern Physics (Harwood Academic Publishers, Australia, 1996)Google Scholar
  21. 21.
    K. Katō, K. Fukatsu, H. Tanaka, Prog. Theor. Phys. 80, 663 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    K. Fukatsu, K. Katō, Prog. Theor. Phys. 87, 151 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Funaki, T. Yamada, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, Phys. Rev. Lett. 101, 082502 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    S. Saito, Prog. Theor. Phys. 40, 893 (1968)ADSCrossRefGoogle Scholar
  25. 25.
    S. Saito, Prog. Theor. Phys. 41, 705 (1969)ADSCrossRefGoogle Scholar
  26. 26.
    S. Saito, S. Okai, R. Tamagaki, M. Yasuno, Prog. Theor. Phys. 50, 1561 (1973)ADSCrossRefGoogle Scholar
  27. 27.
    P.O. Hess, G. Lévai, J. Cseh, Phys. Rev. C 54, 2345 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Academic Press, New York, 1977)Google Scholar
  29. 29.
    J.P. Elliott, Proc. R. Soc. London A 245, 128 (1958)ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Elliott, Proc. R. Soc. London A 245, 562 (1958)ADSCrossRefGoogle Scholar
  31. 31.
    D.J. Rowe, Rep. Prog. Phys. 48, 1419 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    O. Castaños, J.P. Draayer, Y. Leschber, Z. Phys. A 329, 33 (1988)ADSGoogle Scholar
  33. 33.
    G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand Company INC, New York, 1963). Google Scholar
  34. 34.
    J. Blomqvist, A. Molinari, Nucl. Phys. A 106, 545 (1968)ADSCrossRefGoogle Scholar
  35. 35.
    O. Castaños, J.P. Draayer, Nucl. Phys. A 491, 349 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    O. Castaños, P.O. Hess, P. Rocheford, J.P. Draayer, Nucl. Phys. A 524, 469 (1991)ADSCrossRefGoogle Scholar
  37. 37.
    O.S. van Roosmalen, PhD Thesis, University of Groningen, The Netherlands (1982)Google Scholar
  38. 38.
    Y. Kanada-En’yo, Phys. Rev. C 96, 034306 (2017)ADSCrossRefGoogle Scholar
  39. 39.
  40. 40.
    H. Yépez-Martínez, M.J. Ermamatov, P.R. Fraser, P.O. Hess, Phys. Rev. C 86, 034309 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    W. Greiner, J.M. Eisenberg, Nuclear Theory I: Nuclear Models (North-Holland, Amsterdam, 1987)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • P. O. Hess
    • 1
    • 2
    Email author
  • J. R. M. Berriel-Aguayo
    • 1
  • L. J. Chávez-Nuñez
    • 1
  1. 1.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  2. 2.Frankfurt Institute for Advanced StudiesJohann Wolfgang Goethe UniversitätFrankfurt am MainGermany

Personalised recommendations