Advertisement

Phenomenological view on baryon-baryon potentials from lattice QCD simulations

  • J. HaidenbauerEmail author
  • Ulf -G. Meißner
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract.

A qualitative discussion on the range of the potentials as they result from the phenomenological meson-exchange picture and from lattice simulations by the HAL QCD Collaboration is presented. For the former pion- and/or \( \eta\)-meson exchange are considered together with the scalar-isoscalar component of correlated \(\pi\pi/K \bar{K}\) exchange. It is observed that the intuitive expectation for the behavior of the baryon-baryon potentials for large separations, associated with the exchange of one and/or two pions, does not always match with the potentials extracted from the lattice simulations. Only in cases where pion exchange provides the longest ranged contribution, like in the \( \Xi N\) system, a reasonable qualitative agreement between the phenomenological and the lattice QCD potentials is found for baryon-baryon separations of \( r \gtrsim 1\) fm. For the \( \Omega N\) and \( \Omega\Omega\) interactions where isospin conservation rules out one-pion exchange a large mismatch is observed, with the potentials by the HAL QCD Collaboration being much longer ranged and much stronger at large distances as compared to the phenomenological expectation. This casts some doubts on the applicability of using these potentials in few- or many-body systems.

References

  1. 1.
    Z. Fodor, C. Hoelbling, Rev. Mod. Phys. 84, 449 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    R.A. Briceño, J.J. Dudek, R.D. Young, Rev. Mod. Phys. 90, 025001 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    HAL QCD Collaboration (S. Aoki et al.), Prog. Theor. Exp. Phys. 2012, 01A105 (2012)Google Scholar
  4. 4.
    S.R. Beane, W. Detmold, K. Orginos, M.J. Savage, Prog. Part. Nucl. Phys. 66, 1 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Davoudi, arXiv:1812.11899 [hep-lat]Google Scholar
  6. 6.
    T. Iritani et al., JHEP 10, 101 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    T. Iritani et al., Phys. Rev. D 96, 034521 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    S.R. Beane, arXiv:1705.09239 [hep-lat]Google Scholar
  9. 9.
    Z. Davoudi, EPJ Web of Conferences 175, 01022 (2018)CrossRefGoogle Scholar
  10. 10.
    HAL QCD Collaboration (T. Iritani et al.), JHEP 03, 007 (2019)Google Scholar
  11. 11.
    M. Lüscher, Commun. Math. Phys. 105, 153 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    M. Lüscher, Nucl. Phys. B 354, 531 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    HAL QCD Collaboration (N. Ishii et al.), Phys. Lett. B 712, 437 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    T. Yamazaki, Y. Kuramashi, Phys. Rev. D 96, 114511 (2017)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Aoki, T. Doi, T. Hatsuda, N. Ishii, Phys. Rev. D 98, 038501 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    T. Yamazaki, Y. Kuramashi, Phys. Rev. D 98, 038502 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    E. Epelbaum, H.W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)Google Scholar
  19. 19.
    M. Lacombe, B. Loiseau, J.M. Richard, R. Vinh Mau, J. Cote, P. Pires, R. De Tourreil, Phys. Rev. C 21, 861 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    A. Reuber, K. Holinde, H.C. Kim, J. Speth, Nucl. Phys. A 608, 243 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)Google Scholar
  22. 22.
    R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    HAL QCD Collaboration (K. Sasaki et al.), EPJ Web of Conferences 175, 05010 (2018)CrossRefGoogle Scholar
  24. 24.
    T. Iritani et al., Phys. Lett. B 792, 284 (2019) arXiv:1810.03416 [hep-lat]CrossRefGoogle Scholar
  25. 25.
    S. Gongyo et al., Phys. Rev. Lett. 120, 212001 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    T. Sekihara, Y. Kamiya, T. Hyodo, Phys. Rev. C 98, 015205 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, W. Weise, Eur. Phys. J. C 77, 760 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, Nucl. Phys. A 915, 24 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    G.E. Brown, W. Weise, Phys. Rep. 22, 279 (1975)ADSCrossRefGoogle Scholar
  30. 30.
    N. Fettes, U.-G. Meißner, Nucl. Phys. A 676, 311 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Shi-Lin Zhu, Phys. Rev. C 63, 018201 (2001)ADSGoogle Scholar
  32. 32.
    C. Alexandrou, E.B. Gregory, T. Korzec, G. Koutsou, J.W. Negele, T. Sato, A. Tsapalis, Phys. Rev. D 87, 114513 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    R.B. Wiringa, R.A. Smith, T.L. Ainsworth, Phys. Rev. C 29, 1207 (1984)ADSCrossRefGoogle Scholar
  34. 34.
    R.V. Reid Jr., Ann. Phys. 50, 411 (1968)ADSCrossRefGoogle Scholar
  35. 35.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    R.H. Dalitz, F.v. Hippel, Phys. Lett. 10, 153 (1964)ADSCrossRefGoogle Scholar
  37. 37.
    M. Sander, H.V. von Geramb, Lect. Notes Phys. 488, 141 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    B. Holzenkamp, K. Holinde, J. Speth, Nucl. Phys. A 500, 485 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Advanced Simulation and Jülich Center for Hadron Physics, Institut für KernphysikForschungszentrum JülichJülichGermany
  2. 2.Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  3. 3.Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations