Advertisement

Meson Photo-Production in GEANT4 for \(E_\gamma = 0.225\)-3.0 GeV using the \(\gamma + p \rightarrow p + \pi^{0}\) reaction

  • S. B. L. Amar
  • O. Ka
  • P. GuèyeEmail author
Regular Article - Experimental Physics
  • 15 Downloads

Abstract.

The study of nuclear resonances in the intermediate energy regime requires accurate modeling of the experimental physics background. The cross sections in the GEANT4 toolkit do not adequately treat meson photo-production. The purpose of this study is to compare experimental data and theoretical models implemented in version 9.6.p02 of the GEANT4 Monte Carlo simulation toolkit for the exclusive and differential cross sections of \( \pi^0\) photo-production. Two models were studied: the Chiral Invariant Phase Space (CHIPS) and Bertini Cascade (BERT). The cross section data from the models were compared to the experimental data from the CEBAF Large Acceptance Spectrometer (CLAS) of Jefferson Lab and the phenomenological Scattering Analysis Interactive Dial-in (SAID) model. Relativistic Breit-Wigner fits were used to compare the \(\Delta(1232)\), \(N(1520)\), \(N(1650)\) and \(N(1875)\) resonances from SAID, CLAS and CHIPS, giving agreements to within 3% for the mass of each resonance. The limited tabulated data set of BERT does not allow for an accurate description of the energy distribution, even following its improvement in version 10p02. The angular distributions of the cross sections show significant differences between CHIPS and both CLAS and SAID data, the latter being the most accurate model to describe the \(\gamma p\rightarrow p\pi^0\) exclusive cross section. The physics in CHIPS appears to be correct but it needs further development for the individual resonances contributions that could be useful since it is also the only model able to treat electromagnetically induced meson production for \(A > 1\).

References

  1. 1.
    J. Durand, PhD Thesis, Université Paris Sud XI Orsay (2009)Google Scholar
  2. 2.
    M. Guidal, PhD Thesis, Université Paris Sud XI Orsay (1996)Google Scholar
  3. 3.
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    M. Dugger, B.G. Ritchie, J.P. Ball, P. Collins, E. Pasyuk, R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, G. Adams et al., Phys. Rev. C 76, 025211 (2007) arXiv:0705.0816ADSCrossRefGoogle Scholar
  7. 7.
    M. Dugger, B.G. Ritchie, J.P. Ball, P. Collins, E. Pasyuk, R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, M.J. Amaryan et al., Phys. Rev. C 79, 065206 (2009) arXiv:0903.1110ADSCrossRefGoogle Scholar
  8. 8.
    B. Krusche, Prog. Part. Nucl. Phys. 67, 412 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S.B.L. Amar, Master's Thesis, Université Cheikh Anta Diop (2011)Google Scholar
  10. 10.
    M.C. Kunkel, M.J. Amaryan, I.I. Strakovsky, J. Ritman, G.R. Goldstein, K.P. Adhikari, S. Adhikari, H. Avakian, J. Ball, I. Balossino et al., Phys. Rev. C 98, 015207 (2018) arXiv:1712.10314ADSCrossRefGoogle Scholar
  11. 11.
    Geant4 Physics manual, http://www.geant4.org
  12. 12.
    M.P. Guthrie, R.G. Alsmiller, H.W. Bertini, Nucl. Instrum. Methods 66, 29 (1968)ADSCrossRefGoogle Scholar
  13. 13.
    H.W. Bertini, M.P. Guthrie, Nucl. Phys. A 169, 670 (1971)ADSCrossRefGoogle Scholar
  14. 14.
    P.V. Degtyarenko, M.V. Kosov, H.P. Wellisch, Eur. Phys. J. A 8, 217 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    P.V. Degtyarenko, M.V. Kossov, H.P. Wellisch, Eur. Phys. J. A 9, 411 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    P.V. Degtyarenko, M.V. Kossov, H.P. Wellisch, Eur. Phys. J. A 9, 421 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Y.E. Titarenko, O.V. Shvedov, V.F. Batyaev, E.I. Karpikhin, V.M. Zhivun, R.D. Mulambetov, A.N. Sosnin, S.G. Mashnik, R.E. Prael, T.A. Gabriel, Experimental and computer simulation study of radionuclide production in heavy materials irradiated by intermediate energy protons, in 3rd Topical Meeting on Nuclear Applications of Accelerators Technology (AccApp'99), ANS 1999 Winter Meeting, Long Beach, CA, November 14-18, 1999, LANL Report LA-UR-99-4489 (1999) arXiv:nucl-ex/9908012Google Scholar
  18. 18.
    B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 97, 31 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    M.V. Kossov, Eur. Phys. J. A 14, 265 (2002)CrossRefGoogle Scholar
  20. 20.
    C.A.Z. Vasconcellos, H.T. Coelho, F.G. Pilotto, B.E.J. Bodmann, M. Dillig, M. Razeira, Eur. Phys. J. C 4, 115 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    G.A. Miller, A.W. Thomas, S. Theberge, Phys. Lett. B 91, 192 (1980)ADSCrossRefGoogle Scholar
  22. 22.
    C.E. DeTar, Phys. Rev. D 24, 752 (1981)ADSCrossRefGoogle Scholar
  23. 23.
    M. Bég, G. Garvey, Comm. Nucl. Part. Phys. 18, 1 (1988)Google Scholar
  24. 24.
    N. Isgur, Acta Phys. Austriaca Suppl. 27, 177 (1985)Google Scholar
  25. 25.
    F. James, Monte-Carlo Phase Space, CERN 68-15 (1968)Google Scholar
  26. 26.
    F. James, Minuit Function Minimization and Error Analysis: Reference Manual Version 94.1, CERN-D-506 (1994)Google Scholar
  27. 27.
    The Particle Data Group, http://www.pdg.lbl.gov
  28. 28.
    Scattering Analysis Interactive Dial-in (SAID), http://gwdac.phys.gwu.edu
  29. 29.
    J. O'Meara, J. Alcorn, P. Brindza, M.S. Chew, G. Doolittle, M. Fowler, B. Mecking, C. Riggs, D. Tilles, W. Tuzel, IEEE Trans. Magn. 25, 1902 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université Cheikh Anta DiopDakarSenegal
  2. 2.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA

Personalised recommendations