Advertisement

Improved 242Pu(n,\( \gamma\)) thermal cross section combining activation and prompt gamma analysis

  • J. Lerendegui-MarcoEmail author
  • C. Guerrero
  • T. Belgya
  • B. Maróti
  • K. Eberhardt
  • Ch. E. Düllmann
  • A. R. Junghans
  • C. Mokry
  • J. M. Quesada
  • J. Runke
  • P. Thörle-Pospiech
Regular Article - Experimental Physics
  • 56 Downloads

Abstract.

A good knowledge of the radiative capture cross section of 242Pu is required for innovative nuclear reactor studies, especially for MoX fuel reactors. However, the experimental data available show discrepancies in the energy regions of interest: the thermal point and the keV region. Previous experimental results of the thermal cross section deviate from each other by 20% and these discrepancies are reflected also in the evaluated libraries, each of them giving more credit to different data sets. A recent measurement by Genreith et al. did not succeed to solve the existing discrepancy due to the large uncertainties and correction factors in the analysis. This work presents a new measurement of the thermal capture cross section of 242Pu carried out in the Budapest Research Reactor using the same thin targets of a previous measurement at n_TOF-EAR1, each containing 30mg of 99.995% pure 242Pu . The combined analysis of the full prompt \( \gamma\)-ray spectrum and the 243Pu decay has led to three compatible values for the thermal cross section. Their average value, 18.9(9)b, has an improved accuracy compared to recent measurements. Leaving aside the activation value of Genreith using an outdated intensity value for the 84 keV decay line of 243Pu , our average result is in very good agreement with the JEFF-3.2 evaluation and all the previous measurements, with the exception of the highest value 22.5(11)b reported by Marie et al., which has a strong influence in the ENDF evaluation.

References

  1. 1.
    International Atomic Energy Agency, Status and advances in Mox fuel technology, IAEA Technical Reports Series 415 (2003)Google Scholar
  2. 2.
    N. Colonna et al., Energy Environ. Sci. 3, 1910 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Salvatores, R. Jacqmin, Uncertainty and Target Accuracy Assessment for Innovative System Using Recent Covariance Data Evaluations (NEA/WPEC-26, 2008)Google Scholar
  4. 4.
    NEA Nuclear Data High Priority Request List, http://www.oecd-nea.org/dbdata/hprl/
  5. 5.
    C. Guerrero et al., Eur. Phys. J. A 49, 27 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J. Lerendegui-Marco, C. Guerrero et al., Phys. Rev. C 97, 024605 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    J. Lerendegui-Marco, C. Guerrero, in preparationGoogle Scholar
  8. 8.
    V. Semkova, N. Otuka, M. Mikhailiukova, B. Pritychenko, O. Cabellos, EPJ Web of Conferences 146, 07003 (2017)CrossRefGoogle Scholar
  9. 9.
    F. Marie et al., Nucl. Instrum. Methods Phys. Res. A 556, 547 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    J.P. Butler et al., Can. J. Phys. 35, 147 (1957)ADSCrossRefGoogle Scholar
  11. 11.
    R.W. Durham, F. Molson, Can. J. Phys. 48, 716 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    P.J. Bendt, E.T. Jurney, Los Alamos Scientific Lab. Reports, 7853 (1979)Google Scholar
  13. 13.
    Genreith et al., J. Radioanal. Nucl. Chem. 296, 699 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Rossbach et al., J. Radioanal. Nucl. Chem. 304, 1359 (2015)CrossRefGoogle Scholar
  15. 15.
    R.F. Casten, W.R. Kane, J.R. Erskine, A.M. Friedman, D.S. Gale, Phys. Rev. C 14, 912 (1976)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Akovali et al., Nucl. Data Sheets 103, 515 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Zs. Révay, T. Belgya, Zs. Kasztovszky, J.L. Weil, G.L. Molnr, Nucl. Instrum. Methods B 213, 385 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    L. Szentmiklósi et al., J. Radioanal. Nucl. Chem. 286, 501 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Belgya, Phys. Proc. 31, 99 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J. Füzi, Nucl. Instrum. Methods A 586, 41 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    CHANDA: solving CHAllenges in Nuclear DAta, Project funded by FP7-EURATOM-FISSION, EC (Grant No. 605203)Google Scholar
  22. 22.
    C. Guerrero, J. Lerendegui-Marco, K. Eberhardt et al., Nucl. Instrum. Methods A 925, 87 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    L. Szentmiklósi, T. Belgya, M. Boglarka, Z. Kis, J. Radioanal. Nucl. Chem. 300, 553 (2014)CrossRefGoogle Scholar
  24. 24.
    Z. Kis, P. Völgyesi, Z. Szabó, J. Radioanal. Nucl. Chem. 298, 2029 (2013)CrossRefGoogle Scholar
  25. 25.
    P.R. Fields et al., Nucl. Phys. A 103, 460 (1971)ADSCrossRefGoogle Scholar
  26. 26.
    P. Leconte, in International Conference on Nuclear Data for Science and Technology, (EDP Sciences, 2007) pp. 521--524Google Scholar
  27. 27.
    The JEFF-3.1.1 Nuclear Data Library, JEFF Report 22, OECD/NEA Data Bank (2009)Google Scholar
  28. 28.
    M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    National Nuclear Data Center, Brookhaven National Laboratory, Evaluated Nuclear Structure Data FileGoogle Scholar
  32. 32.
    Database of prompt gamma rays from slow neutron capture for elemental analysis, (International Atomic Energy Agency, Vienna, 2006)Google Scholar
  33. 33.
    C.D. Nesaraja, E.A. McCutchan, Nucl. Data Sheets 121, 695 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    M. Guttormsen, T.S. Tveter, L. Bergholt, F. lngebretsen, J. Rekstad, Nucl. Instrum. Methods A 374, 37 (1996)CrossRefGoogle Scholar
  35. 35.
    T. Belgya, in Proceedings of the European Research Infrastructures for Nuclear Data Applications (ERINDA) workshop, CERN, Geneva, CERN-Proceedings-2014-002 (CERN, 2014) pp. 119--126Google Scholar
  36. 36.
    T. Belgya et al., J. Radioanal. Nucl. Chem. 276, 609 (2008)CrossRefGoogle Scholar
  37. 37.
    T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor, Nucl. Instrum. Methods A 589, 202 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    T. Laplace et al., Phys. Rev. C 93, 014323 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. Lerendegui-Marco
    • 1
    Email author
  • C. Guerrero
    • 1
    • 2
  • T. Belgya
    • 3
  • B. Maróti
    • 3
  • K. Eberhardt
    • 4
    • 5
  • Ch. E. Düllmann
    • 4
    • 5
    • 6
  • A. R. Junghans
    • 7
  • C. Mokry
    • 4
    • 5
  • J. M. Quesada
    • 1
  • J. Runke
    • 4
    • 6
  • P. Thörle-Pospiech
    • 4
    • 5
  1. 1.Dpto. Física Atómica, Molecular y NuclearUniversidad de SevillaSevilleSpain
  2. 2.Centro Nacional de Aceleradores (CNA)SevilleSpain
  3. 3.Nuclear Analysis and Radiography DepartmentHungarian Academy of SciencesBudapestHungary
  4. 4.Johannes Gutenberg Universität MainzMainzGermany
  5. 5.Helmholtz Institute MainzMainzGermany
  6. 6.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  7. 7.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations