Advertisement

Isospin asymmetry of the pseudospin symmetry in nuclear resonant states

Regular Article - Theoretical Physics
  • 11 Downloads

Abstract.

The role of Coulomb and \( \rho\) potentials in the asymmetry of the neutron and proton pseudospin splittings in nuclear resonant states are investigated. To this end, energies and widths of single-particle resonant states in the Sn isotopes are determined within the framework of relativistic mean-field theory combined with a method based on the analytic continuation of the coupling-constant method. We study the effect of these potentials on the energy splittings and widths splittings of the neutron and proton pseudospin partners in correlation with the mass number. Compared with the effect of the Coulomb potential, the \( \rho\) potential gives the main contribution to the isospin asymmetry of the pseudospin energy splittings and width splittings in the resonant states except for the proton rich nuclei. The pseudospin energy symmetry and width symmetry are not always better realized for neutrons than for protons in the resonant states. The Coulomb potential and the \( \rho\) potential always act in an opposite role in influencing the isospin asymmetry of the pseudospin symmetry in the resonant states.

References

  1. 1.
    K.T. Hecht, A. Adler, Nucl. Phys. A 137, 129 (1969)ADSCrossRefGoogle Scholar
  2. 2.
    A. Arima, M. Harvey, K. Shimizu, Phys. Lett. B 30, 517 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    J.N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, A. Arima, Phys. Rev. C 58, R628 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, A. Arima, Phys. Rev. C 59, 154 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    J.Y. Guo, X.Z. Fang, Eur. Phys. J. A 45, 179 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Y.W. Sun, Y. Liu, S.W. Chen, Q. Liu, J.Y. Guo, Eur. Phys. J. A 48, 18 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    P. Alberto, M. Fiolhais, M. Malheiro, A. Delfino, M. Chiapparini, Phys. Rev. Lett. 86, 5015 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    R. Lisboa, M. Malheiro, P. Alberto, Phys. Rev. C 67, 054305 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    J. Meng, P. Ring, Phys. Rev. Lett. 77, 3963 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    J. Meng, P. Ring, Phys. Rev. Lett. 80, 460 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    N. Sandulescu, L.S. Geng, H. Toki, G.C. Hillhouse, Phys. Rev. C 68, 054323 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    L.G. Cao, Z.Y. Ma, Phys. Rev. C 66, 024311 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    S.S. Zhang, J. Meng, S.G. Zhou, G.C. Hillhouse, Phys. Rev. C 70, 034308 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    S.S. Zhang, W. Zhang, S.G. Zhou, J. Meng, Eur. Phys. J. A 32, 43 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    L. Zhang, S.G. Zhou, J. Meng, E.G. Zhao, Phys. Rev. C 77, 014312 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    J.Y. Guo, X.Z. Fang, P. Jiao, J. Wang, B.M. Yao, Phys. Rev. C 82, 034318 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Liu, J.Y. Guo, Z.M. Liu, S.W. Chen, B.M. Yao, Phys. Rev. C 86, 054312 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    X.X. Shi, M. Shi, Z.M. Liu, T.H. Heng, J.Y. Guo, Phys. Rev. C 94, 024302 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    T.T. Sun, Z.M. Liu, S.Q. Zhang, J. Phys. G 43, 045107 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    B.N. Lu, E.G. Zhao, S.G. Zhou, Phys. Rev. Lett. 109, 072501 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    N. Li, M. Shi, J.Y. Guo, Z.M. Liu, H.Z. Liang, Phys. Rev. Lett. 117, 062502 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    J.Y. Guo, X.Z. Fang, Phys. Rev. C 74, 024320 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    J.Y. Guo, R.D. Wang, X.Z. Fang, Phys. Rev. C 72, 054319 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    B.N. Lu, E.G. Zhao, S.G. Zhou, Phys. Rev. C 88, 024323 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    V.I. Kukulin, V.M. Krasnopolsky, J. Horćek, Theory of Resonances: Principles and Applications (Kluwer Academic, Dordrecht, 1989)Google Scholar
  28. 28.
    M. Chiapparini, A. Delfino, M. Malheiro, A. Gattone, Z. Phys. A 357, 47 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    Q. Xu, Eur. Phys. J. A 51, 81 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and OptoelectronicsTaiyuan University of TechnologyTaiyuanP. R. China

Personalised recommendations