Advertisement

Strangeons constitute bulk strong matter: Test using GW 170817

  • Xiaoyu LaiEmail author
  • Enping Zhou
  • Renxin Xu
Regular Article - Theoretical Physics
  • 29 Downloads
Part of the following topical collections:
  1. First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physics

Abstract.

The fundamental strong interaction determines the nature of pulsar-like compact stars which are essentially in the form of bulk strong matter. From an observational point of view, it is proposed that bulk strong matter could be composed of strangeons, i.e. quark-clusters with three-light-flavor symmetry of quarks, and therefore pulsar-like compact objects could actually be strangeon stars. The equation of state (EOS) of strangeon stars is described in a Lennard-Jones model for the purpose of constraining the EOS by both the tidal deformability \(\Lambda\) of GW 170817 and \(M_{\mathrm{TOV}}\). It is found that the allowed parameter space is quite large as most of the Lennard-Jones EOS models satisfy the tidal deformability constraint by GW 170817. The future GW detections for smaller values of \(\Lambda\) and mass measurement for larger values of \(M_{\mathrm{TOV}}\) will help find a better constraint on the strangeon star model.

References

  1. 1.
    R.X. Xu, Sci. China Phys. Mech. Astron. 61, 109531 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    J. Madsen, Phys. Rev. D 50, 3328 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    J. Madsen, Lect. Notes Phys. 516, 162 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    X.Y. Lai, R.X. Xu, J. Phys.: Conf. Series 861, 012027 (2017)Google Scholar
  5. 5.
    L. Landau, Sov. Phys. 1, 285 (1932)Google Scholar
  6. 6.
    E. Witten, Phys. Rev. D 30, 272 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    M.M. Kasliwal, E. Nakar, L.P. Singer et al., Science 358, 1559 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    X.Y. Lai, Y.W. Yu, E.P. Zhou et al., Res. Astron. Astrophys. 18, 24 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    X.Y. Lai, R.X. Xu, Mon. Not. R. Astron. Soc. 398, L31 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    C. Alcock, R. Farhi, A. Olinto, Astrophys. J. 310, 261 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    M. Alford et al., Rev. Mod. Phys. 80, 1455 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    R.X. Xu, in Proceedings of the Compact stars in the QCD phase diagram II, Beijing, 2009, edited by R. Ouyed, SLAC eConf C0905202 (SLAC National Accelerator Laboratory, Menlo Park, 2009)Google Scholar
  14. 14.
    X.Y. Lai, C.Y. Gao, R.X. Xu, Mon. Not. R. Astron. Soc. 431, 3282 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    R.X. Xu, G.J. Qiao, B. Zhang, Astrophys. J. 522, L109 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    A.B. Chen, T.H. Yu, R.X. Xu, Astrophys. J. 668, L55 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    M. Yuan, J.G. Lu, Z.L. Yang et al., Res. Astron. Astrophys. 17, 92 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    W.Y. Wang, J.G. Lu, H. Tong et al., Astrophys. J. 837, 81 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Y.J. Guo, X.Y. Lai, R.X. Xu, Chin. Phys. C 38, 055101 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    R.X. Xu, D.J. Tao, Y. Yang, Mon. Not. R. Astron. Soc. 373, L85 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    H. Tong, Sci. China Phys. Mech. Astron. 59, 5752 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    X.Y. Lai, C.Y. Yun, J.G. Lu et al., Mon. Not. R. Astron. Soc. 476, 3303 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    J.G. Lu et al., Sci. China Phys. Mech. Astron. 61, 089511 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    F. Wilczek, Nature 445, 156 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    S. Dai, L.X. Li, R.X. Xu, Sci. China Phys. Mech. Astron. 54, 1541 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    E.E. Flanagan, T. Hinderer, Phys. Rev. D 77, 021502 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    T. Hinderer, Astrophys. J. 677, 1216 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    S. Postnikov, M. Prakash, J.M. Lattimer, Phys. Rev. D 82, 024016 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    P. Demorest et al., Nature 467, 1081 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    J. Antoniadis et al., Science 340, 448 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    E. Annala et al., Phys. Rev. Lett. 120, 172703 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    E.P. Zhou, X. Zhou, A. Li, Phys. Rev. D 97, 083015 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    E. Most et al., Phys. Rev. Lett. 120, 261103 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    C.D. Bailyn et al., Astrophys. J. 499, 367 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    W.M. Farr, N. Sravan, A. Cantrell et al., Astrophys. J. 741, 103 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Y.W. Yu, L.D. Liu, Z.G. Dai, Astrophys. J. 861, 114 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    S.Z. Li et al., Astrophys. J. 861, L12 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    L. Piro, E. Troja, B. Zhang et al., Mon. Not. R. Astron. Soc. 483, 1912 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    B.J. Owen, Phys. Rev. Lett. 95, 211101 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and EngineeringHubei University of EducationWuhanChina
  2. 2.Research Center for AstronomyHubei University of EducationWuhanChina
  3. 3.Max-Planck-Institut für GravitationsphysikPotsdam-GolmGermany
  4. 4.School of PhysicsPeking UniversityBeijingChina
  5. 5.Kavli Institute of Astronomy and AstrophysicsPeking UniversityBeijingChina

Personalised recommendations