Radioactive boron beams produced by isotope online mass separation at CERN-ISOLDE

Abstract.

We report on the development and characterization of the first radioactive boron beams produced by the isotope mass separation online (ISOL) technique at CERN-ISOLDE. Despite the long history of the ISOL technique which exploits thick targets, boron beams have up to now not been available. This is due to the low volatility of elemental boron and its high chemical reactivity which make the definition of an appropriate production target unit difficult. In addition, the short half-lives of all boron radioisotopes complicate tracer release studies. We report here on dedicated offline release studies by neutron capture and alpha detection done with implanted 10B in prospective target materials, as well as molecule formation and ionization tests, which suggested the use of multiwalled carbon nanotubes (CNT) as target material and injection of sulfur hexafluoride SF6 to promote volatile boron fluoride formation. Two target units equipped with an arc discharge electron impact ion source VADIS coupled to a water cooled transfer line to retain non-volatile elements and molecules were subsequently tested online. The measured yield of these first 8B ISOL beams increases in the series \({}^{8}\mathrm{BF}_{3} < {}^{8}\mathrm{BF} < {}^{8}\mathrm{B} < {}^{8}\mathrm{BF}_{2}\), reaching a maximum yield of \( 6.4 \times 10^{4}\)8BF2+ ions per μC of protons.

References

  1. 1

    R. Catherall, W. Andreazza, M. Breitenfeldt, A. Dorsival, G.J. Focker, T.P. Gharsa, T. Giles, J.L. Grenard, F. Locci, P. Martins et al., J. Phys. G: Nucl. Part. Phys. 44, 094002 (2017)

    ADS  Article  Google Scholar 

  2. 2

    U. Köster, P. Carbonez, A. Dorsival, J. Dvorak, R. Eichler, S. Fernandes, H. Frånberg, J. Neuhausen, Z. Novackova, R. Wilfinger et al., Eur. Phys. J. ST 150, 285 (2007)

    Article  Google Scholar 

  3. 3

    C. Seiffert, Production of radioactive molecular beams for CERN-ISOLDE, Doctoral Thesis, Technische Universität Darmstadt, Germany (2014) http://cds.cern.ch/record/2064456

  4. 4

    R. Kirchner, Nucl. Instrum. Methods Phys. Res. Sect. B 70, 186 (1992)

    ADS  Article  Google Scholar 

  5. 5

    J. Ramos, A. Gottberg, T. Mendonça, C. Seiffert, A. Senos, H. Fynbo, O. Tengblad, J. Briz, M. Lund, G. Koldste et al., Nucl. Instrum. Methods Phys. Res. Sect. B 320, 83 (2014)

    ADS  Article  Google Scholar 

  6. 6

    A. DiPietro, P. Figuera, A. Bonaccorso, M. Fisichella, J. Gomez-Camacho, M. Lattuada, M. Milin, A. Musumarra, M. Pellegriti, D. Santonocito, Tech. Rep. CERN-INTC-2010-063. INTC-I-126, CERN, Geneva (2010) https://cds.cern.ch/record/1298251

  7. 7

    M. Pellegriti, P. Descouvemont, A. DiPietro, P. Figuera, M. Fisichella, M. Lattuada, M. Milin, A. Musumarra, V. Scuderi, D. Torresi, Tech. Rep. CERN-INTC-2010-069. INTC-I-127, CERN, Geneva (2010) https://cds.cern.ch/record/1298603

  8. 8

    Sacavm Lisbon Leuven Göttingen Porto Durban CERN Collaboration, EC-SLI Collaboration (U. Wahl, L. Amorim, J.P. Araujo, K. Bharuth-Ram, J.G. Correia, M.R. da Silva, S. Decoster, H. Hofsäss, M. Nagl, L. Pereira), Tech. Rep. CERN-INTC-2010-077. INTC-I-130, CERN, Geneva (2010) https://cds.cern.ch/record/1298732

  9. 9

    T. Roger, J. Büscher, B. Bastin, O.S. Kirsebom, R. Raabe, M. Alcorta, J. Äystö, M.J.G. Borge, M. Carmona-Gallardo, T.E. Cocolios et al., Phys. Rev. Lett. 108, 162502 (2012)

    ADS  Article  Google Scholar 

  10. 10

    O.S. Kirsebom, S. Hyldegaard, M. Alcorta, M.J.G. Borge, J. Büscher, T. Eronen, S. Fox, B.R. Fulton, H.O.U. Fynbo, H. Hultgren et al., Phys. Rev. C 83, 065802 (2011)

    ADS  Article  Google Scholar 

  11. 11

    J.R. Rumble (Editor), CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 99th edn. (Taylor & Francis, 2018)

  12. 12

    A. Kelic, M.V. Ricciardi, K.H. Schmidt, ABLA07 - towards a complete description of the decay channels of a nuclear system from spontaneous fission to multifragmentation, in Proceedings of the Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, Trieste, Italy, February 4-8, 2008 (IAEA, 2008) arXiv:0906.4193

  13. 13

    T. Bjørnstad, E. Hagebø, P. Hoff, O. Jonsson, E. Kugler, H. Ravn, S. Sundell, B. Vosicki, Nucl. Instrum. Methods Phys. Res. Sect. B 26, 174 (1987)

    ADS  Article  Google Scholar 

  14. 14

    W. Callister, Materials Science and Engineering: An Introduction (John Wiley & Sons, New York, 2007)

  15. 15

    M. Fujioka, Y. Arai, Nucl. Instrum. Methods Phys. Res. Sect. B 186, 409 (1981)

    Article  Google Scholar 

  16. 16

    H. Fechtig, S. Kalbitzer, The Diffusion of Argon in Potassium-Bearing Solids (Springer Berlin Heidelberg, Berlin, Heidelberg, 1966) pp. 68--107

  17. 17

    D. Fink, L. Wang, Radiat. Effects Defects Solids 114, 343 (1990)

    Article  Google Scholar 

  18. 18

    D. Brown, M. Chadwick, R. Capote, A. Kahler, A. Trkov, M. Herman, A. Sonzogni, Y. Danon, A. Carlson, M. Dunn et al., Nucl. Data Sheets 148, 1 (2018)

    ADS  Article  Google Scholar 

  19. 19

    A. Göpfert, F.J. Hambsch, H. Bax, Nucl. Instrum. Methods Phys. Res. Sect. A 441, 438 (2000)

    ADS  Article  Google Scholar 

  20. 20

    L.W. Weston, J.H. Todd, Nucl. Sci. Eng. 109, 113 (1991)

    Article  Google Scholar 

  21. 21

    J. Vacik, V. Hnatowicz, J. Cervena, S. Posta, U. Köster, G. Pasold, AIP Conf. Proc. 1099, 836 (2009)

    ADS  Article  Google Scholar 

  22. 22

    J. Ramos, A. Senos, T. Stora, C. Fernandes, P. Bowen, J. Eur. Ceramic Soc. 37, 3899 (2017)

    Article  Google Scholar 

  23. 23

    G. Heller, Gmelin Handbook of Inorganic and Organometallic Chemistry - B Boron Compounds, 4th Supplement, Boron and Oxygen (Springer Berlin Heidelberg, 1991) https://doi.org/10.1007/978-3-662-06150-3.

  24. 24

    G. Henning, J. Chem. Phys. 42, 1167 (1965)

    ADS  Article  Google Scholar 

  25. 25

    Y.V. Novak, T.V. Pyrkova, A.F. Kuteinikov, Khimiya Tverdogo Topliva 16, 127 (1982)

    Google Scholar 

  26. 26

    J.F. Ziegler, M. Ziegler, J. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010)

    ADS  Article  Google Scholar 

  27. 27

    J.F. Ziegler, SRIM The Stopping Range of Ions in Matter, http://www.srim.org (2018) (accessed 24 August 2018)

  28. 28

    J.P. Ramos, Thick solid targets for the production and online release of radioisotopes: the importance of the material characteristics - A Review, in preparation

  29. 29

    A.I. Skoulidas, D.M. Ackerman, J.K. Johnson, D.S. Sholl, Phys. Rev. Lett. 89, 185901 (2002)

    ADS  Article  Google Scholar 

  30. 30

    A. Noy, J. Phys. Chem. C 117, 7656 (2013)

    Article  Google Scholar 

  31. 31

    G.A. Perkova, A.V. Demin, E.F. Chalykh, Y.M. Kachanov, Khimiya Tverdogo Topliva 5, 163 (1976)

    Google Scholar 

  32. 32

    A. Roine, HSC Chemistry 7.1, http://www.hsc-chemistry.net (2010) (accessed 19 July 2015)

  33. 33

    L. Penescu, R. Catherall, J. Lettry, T. Stora, Rev. Sci. Instrum. 81, 02A906 (2010)

    Article  Google Scholar 

  34. 34

    Nucleonica GmbH, Nucleonica Nuclear Science Portal, www.nucleonica.com (2017) version 3.0.65

  35. 35

    M. Turrión, M. Eller, R. Catherall, L. Fraile, U. Herman-Izycka, U. Köster, J. Lettry, K. Riisager, T. Stora, Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4674 (2008)

    ADS  Article  Google Scholar 

  36. 36

    W.T. Winter, S.J. Freedman, K.E. Rehm, J.P. Schiffer, Phys. Rev. C 73, 025503 (2006)

    ADS  Article  Google Scholar 

  37. 37

    E. Bouquerel, Atomic beam merging and suppression of alkali contaminants in multi body high power targets: Design and test of target and ion source prototypes at isolde, Doctoral Thesis (2009)

  38. 38

    T. Stora, E. Noah, R. Hodak, T.Y. Hirsh, M. Hass, V. Kumar, K. Singh, S. Vaintraub, P. Delahaye, H. Franberg-Delahaye et al., EPL 98, 32001 (2012)

    ADS  Article  Google Scholar 

  39. 39

    A. Ferrari, P.R. Sala, A. Fass, J. Ranft, FLUKA: A multi-particle transport code (program version 2005), CERN Yellow Reports: Monographs (CERN, Geneva, 2005) http://cds.cern.ch/record/898301

  40. 40

    J. Lettry, R. Catherall, P. Drumm, P. Van Duppen, A. Evensen, G. Focker, A. Jokinen, O. Jonsson, E. Kugler, H. Ravn et al., Nucl. Instrum. Methods Phys. Res. Sect. B 126, 130 (1997)

    ADS  Article  Google Scholar 

  41. 41

    Y. Kadi, Y. Blumenfeld, W.V. Delsolaro, M.A. Fraser, M. Huyse, A.P. Koufidou, J.A. Rodriguez, F. Wenander, J. Phys. G: Nucl. Part. Phys. 44, 084003 (2017)

    ADS  Article  Google Scholar 

  42. 42

    M. Borge, J. Cederkall, P. Diaz Fernandez, L. Fraile, H. Fynbo, A. Heinz, J. Jensen, H. Johansson, B. Jonson, O. Kirsebom, Tech. Rep. CERN-INTC-2016-052. INTC-P-482, CERN, Geneva (2016) http://cds.cern.ch/record/2222324

  43. 43

    ISOLDE-IDS Setup, http://isolde-ids.web.cern.ch/isolde-ids/#setup (2018) (accessed 31 July 2018)

  44. 44

    A. Di Pietro, P. Figuera, J. Ballof, A. Bonaccorso, J. Cederkall, T. Davinson, J. Fernandez Garcia, M. Fisichella, M. Garcia Borge, J. Gomez Camacho, Tech. Rep. CERN-INTC-2016-018. INTC-P-463, CERN, Geneva (2016) https://cds.cern.ch/record/2120157

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Stora.

Additional information

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by K. Blaum

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ballof, J., Seiffert, C., Crepieux, B. et al. Radioactive boron beams produced by isotope online mass separation at CERN-ISOLDE. Eur. Phys. J. A 55, 65 (2019). https://doi.org/10.1140/epja/i2019-12719-1

Download citation