Advertisement

The \(4\pi\) highly-efficient light-charged-particle detector EUCLIDES, installed at the GALILEO array for in-beam \(\gamma\)-ray spectroscopy

  • D. TestovEmail author
  • D. Mengoni
  • A. Goasduff
  • A. Gadea
  • R. Isocrate
  • P. R. John
  • G. de Angelis
  • D. Bazzacco
  • C. Boiano
  • A. Boso
  • P. Cocconi
  • J. A. Dueñas
  • F. J. Egea Canet
  • L. Grassi
  • K. Hadyńska-Klek
  • G. Jaworski
  • S. Lunardi
  • R. Menegazzo
  • D. R. Napoli
  • F. Recchia
  • M. Siciliano
  • J. J. Valiente-Dobón
Regular Article - Experimental Physics
  • 37 Downloads

Abstract.

In a fusion-evaporation reaction, nuclei are produced by evaporating light-charged particles and neutrons from the compound nucleus. Typically, a nucleus of interest is produced as a result of a part of the total cross-section and, in order to guarantee a good channel discrimination, a particle detector, like the EUCLIDES \(4\pi\) Si-ball array, is necessary. EUCLIDES has been quoted in more than a hundred publications resulting from many experiments performed in combination with the EUROBALL and GASP \(\gamma\)-ray spectrometers. The present paper reports on the upgraded version of EUCLIDES, that is presently coupled to the new GALILEO \(\gamma\)-ray spectrometer, installed at the Laboratori Nazionali di Legnaro, INFN. The design, characteristics and performance of the EUCLIDES array are presented and discussed.

References

  1. 1.
    E. Farnea, G. de Angelis, M. De Poli et al., Nucl. Instrum. Methods A 400, 87 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    C. Rossi Alvarez, Nucl. Phys. News 3, 10 (1993)CrossRefGoogle Scholar
  3. 3.
    J. Gerl, R.M. Lieder (Editors), EUROBALL III, European $\gamma$-ray facility (GSI Darmstadt, 1992)Google Scholar
  4. 4.
    J. Simpson, Z. Phys. A 358, 139 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    G. Duchêne, F.A. Beck, P.J. Twin et al., Nucl. Instrum. Methods A 432, 90 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    A. Gadea, LNL Annual Report (1996) p. 225Google Scholar
  7. 7.
    A. Gadea, LNL Annual Report (1999) p. 151Google Scholar
  8. 8.
    D. Testov, LNL Annual Report (2014) p. 105Google Scholar
  9. 9.
    G. Bisoffi, G. Prete, A. Andrighetto et al., Nucl. Instrum. Methods B 376, 402 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    J.J. Valiente-Dobón, INFN LNL Annual report (2014) p. 79Google Scholar
  11. 11.
    D. Bazzacco, Proceedings of the Workshop on Large $\gamma$-ray Detector Arrays (Chalk River, Canada), AECL10613 (IAEA, 1992) p. 376Google Scholar
  12. 12.
    D. Mengoni, J.A. Dueñas, M. Assié et al., Nucl. Instrum. Methods A 764, 241 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    N. Cieplicka-Oryńczak, D. Mengoni, M. Ciemala et al., Eur. Phys. J. A 54, 209 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    O. Skeppstedt, H.A. Roth, L. Lindström et al., Nucl. Instrum. Methods A 421, 531 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    J. Ljungvall, M. Palacz, J. Nyberg, Nucl. Instrum. Methods A 528, 741 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    C. Müller-Gatermann, F. von Spee, A. Goasduff et al., Nucl. Instrum. Methods A 920, 95 (2019)ADSCrossRefGoogle Scholar
  17. 17.
    M. Rocchini, K. Hadyńska-Klek, A. Nannini et al., Phys. Scr. 92, 074001 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    A. Giaz, L. Pellegri, S. Riboldi et al., Nucl. Instrum. Methods A 729, 910 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    G. Benzoni, LNL Annual Report (2015) p. 84Google Scholar
  20. 20.
    S. Ceruti, LNL Annual Report (2016) p. 31Google Scholar
  21. 21.
    E. Farnea, PhD Thesis, Department of Physics, University of Surrey (2011)Google Scholar
  22. 22.
  23. 23.
    Glenn F. Knoll, Radiation Detection and Measurements (John Wiley & Sons. Inc., 2000) p. 396Google Scholar
  24. 24.
    J.F. Ziegler, Appl. Phys. 31, 544 (1977)ADSGoogle Scholar
  25. 25.
    M. Bellato, D. Bortolato, J. Chavas et al., J. Instrum. 8, P07003 (2013)CrossRefGoogle Scholar
  26. 26.
    V.T. Jordanov, G.F. Knoll, Nucl. Instrum. Methods A 345, 337 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    J. Gutleber, S. Murray, L. Orsini, Comput. Phys. Commun. 153, 155 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    J. Grebosz, Comput. Phys. Commun. 176, 251 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    L.C. Northcliffe, R.F. Schilling, At. Data Nucl. Data Tables 7, 233 (1970)ADSCrossRefGoogle Scholar
  30. 30.
    G. Audi, M. Wang, A.H. Wapstra et al., Chin. Phys. C 36, 1287 (2012)CrossRefGoogle Scholar
  31. 31.
    P.R. John, LNL Annual Report (2015) p. 54Google Scholar
  32. 32.
    S.Y. Van Der Werf, Nucl. Instrum. Methods 153, 221 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • D. Testov
    • 1
    • 2
    Email author
  • D. Mengoni
    • 1
    • 2
  • A. Goasduff
    • 1
    • 2
  • A. Gadea
    • 3
  • R. Isocrate
    • 2
  • P. R. John
    • 1
    • 2
    • 4
  • G. de Angelis
    • 5
  • D. Bazzacco
    • 2
  • C. Boiano
    • 6
    • 7
  • A. Boso
    • 1
    • 2
  • P. Cocconi
    • 5
  • J. A. Dueñas
    • 8
  • F. J. Egea Canet
    • 1
  • L. Grassi
    • 1
    • 2
  • K. Hadyńska-Klek
    • 5
  • G. Jaworski
    • 5
  • S. Lunardi
    • 1
    • 2
  • R. Menegazzo
    • 2
  • D. R. Napoli
    • 5
  • F. Recchia
    • 1
    • 2
  • M. Siciliano
    • 5
  • J. J. Valiente-Dobón
    • 5
  1. 1.Dipartimento di Fisica e Astronomia dell’Università di PadovaPadovaItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Sezione di PadovaPadovaItaly
  3. 3.Instituto de Fisica CorpuscularCSIC-Universitat de ValenciaValenciaSpain
  4. 4.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  5. 5.Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di LegnaroPadovaItaly
  6. 6.Dipartimento di Fisica dell`Università di MilanoMilanoItaly
  7. 7.Istituto Nazionale di Fisica Nucleare, Sezione di MilanoMilanoItaly
  8. 8.Departamento de Ingenierìa Eléctrica, Escuela Técnica Superior de IngenieríaUniversidad de HuelvaHuelvaSpain

Personalised recommendations