Advertisement

One particle distribution function and shear viscosity in magnetic field: A relaxation time approach

  • Payal Mohanty
  • Ashutosh Dash
  • Victor RoyEmail author
Regular Article - Theoretical Physics
  • 8 Downloads

Abstract.

We calculate the \( \delta f\) correction to the one particle distribution function in the presence of magnetic field and non-zero shear viscosity within the relaxation time approximation. The \( \delta f\) correction is found to be electric charge dependent. Subsequently, we also calculate one longitudinal and four transverse shear viscous coefficients as a function of the dimensionless Hall parameter \( \chi_{H}\) in the presence of the magnetic field. We find that a proper linear combination of the shear viscous coefficients calculated in this work scales with the result obtained from Grad’s moment method in [#!Denicol:2018rbw!#]. The calculation of the invariant yield of \( \pi^{-}\) in a simple Bjorken expansion with cylindrical symmetry shows no noticeable change in spectra due to the \( \delta f\) correction for realistic values of the magnetic field and relaxation time. However, when transverse expansion is taken into account using a blast wave type flow field we found noticeable change in spectra and elliptic flow coefficients due to the \( \delta f\) correction. The \( \delta f\) is also found to be very sensitive to the magnitude of magnetic field. Hence we think it is important to take into account the \( \delta f\) correction in more realistic numerical magnetohydrodynamics simulations.

References

  1. 1.
    A. Bzdak, V. Skokov, Phys. Lett. B 710, 171 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    W.T. Deng, X.G. Huang, Phys. Rev. C 85, 044907 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    V. Roy, S. Pu, Phys. Rev. C 92, 064902 (2015) arXiv:1508.03761 [nucl-th]ADSCrossRefGoogle Scholar
  4. 4.
    D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Johann Rafelski, Berndt Müller, Phys. Rev. Lett. 36, 517 (1976)CrossRefGoogle Scholar
  6. 6.
    H. Li, X.l. Sheng, Q. Wang, Phys. Rev. C 94, 044903 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    K. Tuchin, Phys. Rev. C 88, 024911 (2013) arXiv:1305.5806 [hep-ph]ADSCrossRefGoogle Scholar
  8. 8.
    K. Tuchin, Phys. Rev. C 91, 064902 (2015) arXiv:1411.1363 [hep-ph]ADSCrossRefGoogle Scholar
  9. 9.
    K. Tuchin, Phys. Rev. C 82, 034904 (2010) 83ADSCrossRefGoogle Scholar
  10. 10.
    K. Tuchin, Phys. Rev. C 83, 017901 (2011) arXiv:1008.1604 [nucl-th]ADSCrossRefGoogle Scholar
  11. 11.
    G. Basar, D. Kharzeev, V. Skokov, Phys. Rev. Lett. 109, 202303 (2012) arXiv:1206.1334 [hep-ph]ADSCrossRefGoogle Scholar
  12. 12.
    Y. Hirono, T. Hirano, D.E. Kharzeev, Phys. Rev. C 91, 054915 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    A. Dash, V. Roy, B. Mohanty, Magneto-Vortical evolution of QGP in heavy ion collisions, arXiv:1705.05657 [nucl-th]Google Scholar
  14. 14.
    W. Florkowski, A. Kumar, R. Ryblewski, Vortex-like solutions and internal structures of covariant ideal magnetohydrodynamics, arXiv:1803.06695 [nucl-th]Google Scholar
  15. 15.
    B. Mcinnes, A bound on vorticity, arXiv:1803.02528 [hep-ph]Google Scholar
  16. 16.
    X.l. Sheng, D.H. Rischke, D. Vasak, Q. Wang, Eur. Phys. J. A 54, 21 (2018) arXiv:1707.01388 [hep-ph]ADSCrossRefGoogle Scholar
  17. 17.
    R. Samanta, R. Sharma, S.P. Trivedi, Phys. Rev. A 96, 053601 (2017) arXiv:1607.04799 [cond-mat.quant-gas]ADSCrossRefGoogle Scholar
  18. 18.
    S. Li, H.U. Yee, Phys. Rev. D 97, 056024 (2018) arXiv:1707.00795 [hep-ph]ADSCrossRefGoogle Scholar
  19. 19.
    K. Hattori, X.G. Huang, D.H. Rischke, D. Satow, Phys. Rev. D 96, 094009 (2017) arXiv:1708.00515 [hep-ph]CrossRefGoogle Scholar
  20. 20.
    S. Ghosh, B. Chatterjee, P. Mohanty, A. Mukharjee, H. Mishra, Perfect fluid nature in weakly-interacting magnetized quark matter, arXiv:1804.00812 [hep-ph]Google Scholar
  21. 21.
    C. Shen, S.A. Bass, T. Hirano, P. Huovinen, Z. Qiu, H. Song, U. Heinz, J. Phys. G 38, 124045 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    H. Song, U.W. Heinz, Phys. Lett. B 658, 279 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    H. Song, U.W. Heinz, Phys. Rev. C 78, 024902 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    P. Bozek, I. Wyskiel-Piekarska, Phys. Rev. C 85, 064915 (2012) arXiv:1203.6513 [nucl-th]ADSCrossRefGoogle Scholar
  27. 27.
    V. Roy, A.K. Chaudhuri, B. Mohanty, Phys. Rev. C 86, 014902 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    H. Niemi, G.S. Denicol, P. Huovinen, E. Molnar, D.H. Rischke, Phys. Rev. C 86, 014909 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    U. Heinz, C. Shen, H. Song, AIP Conf. Proc. 1441, 766 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 85, 024901 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    P. Romatschke, U. Romatschke, Relativistic fluid dynamics in and out of equilibrium -- ten years of progress in theory and numerical simulations of nuclear collisions, arXiv:1712.05815 [nucl-th]Google Scholar
  32. 32.
    U. Gursoy, D. Kharzeev, K. Rajagopal, Phys. Rev. C 89, 054905 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    B.G. Zakharov, Phys. Lett. B 737, 262 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    L.G. Pang, G. Endrödi, H. Petersen, Phys. Rev. C 93, 044919 (2016) arXiv:1602.06176 [nucl-th]ADSCrossRefGoogle Scholar
  35. 35.
    G. Inghirami, L. Del Zanna, A. Beraudo, M.H. Moghaddam, F. Becattini, M. Bleicher, Eur. Phys. J. C 76, 659 (2016) arXiv:1609.03042 [hep-ph]ADSCrossRefGoogle Scholar
  36. 36.
    A. Das, S.S. Dave, P.S. Saumia, A.M. Srivastava, Effects of magnetic field on the plasma evolution in relativistic heavy-ion collisions, arXiv:1703.08162 [hep-ph]Google Scholar
  37. 37.
    M. Greif, C. Greiner, Z. Xu, Magnetic field influence on the early time dynamics of heavy-ion collisions, arXiv:1704.06505 [hep-ph]Google Scholar
  38. 38.
    V. Roy, S. Pu, L. Rezzolla, D. Rischke, Phys. Lett. B 750, 45 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    V. Roy, S. Pu, L. Rezzolla, D.H. Rischke, Phys. Rev. C 96, 054909 (2017) arXiv:1706.05326 [nucl-th]ADSCrossRefGoogle Scholar
  40. 40.
    S. Pu, V. Roy, L. Rezzolla, D.H. Rischke, Phys. Rev. D 93, 074022 (2016) arXiv:1602.04953 [nucl-th]ADSCrossRefGoogle Scholar
  41. 41.
    S. Pu, D.L. Yang, Phys. Rev. D 93, 054042 (2016) arXiv:1602.04954 [nucl-th]ADSCrossRefGoogle Scholar
  42. 42.
    E. Stewart, K. Tuchin, Magnetic field in expanding quark-gluon plasma, arXiv:1710.08793 [nucl-th]Google Scholar
  43. 43.
    M.H. Moghaddam, B. Azadegan, A.F. Kord, W.M. Alberico, Eur. Phys. J. C 78, 255 (2018) arXiv:1705.08192 [hep-ph]ADSCrossRefGoogle Scholar
  44. 44.
    G.S. Denicol, X.G. Huang, E. Molnr, G.M. Monteiro, H. Niemi, J. Noronha, D.H. Rischke, Q. Wang, Non-resistive dissipative magnetohydrodynamics from the Boltzmann equation in the 14-moment approximation, arXiv:1804.05210 [nucl-th]. Google Scholar
  45. 45.
    X.G. Huang, M. Huang, D.H. Rischke, A. Sedrakian, Phys. Rev. D 81, 045015 (2010) arXiv:0910.3633 [astro-ph.HE]ADSCrossRefGoogle Scholar
  46. 46.
    X.G. Huang, A. Sedrakian, D.H. Rischke, Ann. Phys. 326, 3075 (2011) arXiv:1108.0602 [astro-ph.HE]ADSCrossRefGoogle Scholar
  47. 47.
    S.R. de Groot, W.A. van Leeuwen, Ch.G. van Weert, Relativistic Kinetic Theory: Principle and Application (North Holland Publishing Company, 1980)Google Scholar
  48. 48.
    Remi Hakim, Phys. Rev. 162, 128 (1967)ADSCrossRefGoogle Scholar
  49. 49.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics, Vol. 10 (Butterworth-Heinemann, 2005)Google Scholar
  50. 50.
    D.D. Ofengeim, D.G. Yakovlev, EPL 112, 59001 (2015) arXiv:1512.03915 [astro-ph.SR]ADSCrossRefGoogle Scholar
  51. 51.
    D. Teaney, Phys. Rev. C 68, 034913 (2003) arXiv:nucl-th/0301099ADSCrossRefGoogle Scholar
  52. 52.
    HotQCD Collaboration (A. Bazavov et al.), Phys. Rev. D 90, 094503 (2014) arXiv:1407.6387 [hep-lat]ADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute of Science Education and Research, HBNIJataniIndia

Personalised recommendations