Advertisement

Collective clusterization approach to investigate the relevance of deformation effects in Sn radioactivity

  • Kanishka Sharma
  • Gudveen SawhneyEmail author
  • Manoj K. Sharma
  • Raj K. Gupta
Regular Article - Theoretical Physics
  • 30 Downloads

Abstract.

The role of deformations and orientations is studied in cluster decays of various radioactive nuclei leading to doubly magic 100Sn or 132Sn daughter nucleus, using the preformed cluster model (PCM). This model treats the cluster emission process via tunnelling across the potential barrier, the cluster/fragment being preformed with a relative probability \( P_0\). With the incorporation of deformation and orientation effects, the fragmentation potential, the penetration path and related barrier characteristics get significantly modified, due to which both the preformation probability \( P_0\) and penetrability P of the emitting cluster get influenced. The calculated half-lives of the decaying clusters calculated using PCM are found to be within the upper limits of the present experiments. The influence of deformations and orientations on Sn radioactivity is also seen in terms of various barrier characteristics such as barrier modification, barrier height, etc. Moreover, the role of different nuclear proximity potentials, i.e., Prox 77, Prox 88 and Prox 00, is analyzed in the context of potential energy surfaces (PES) in the ground-state decay of parent nucleus. The behavior of PES is explored including, as well as without including, the shell corrections in the binding energies, which in turn help to explore the importance of doubly magic closed shell configuration of daughter and cluster nuclei. The possible role of higher order multipole deformations (i.e., up to \( \beta_{4i}\)) is also analyzed in view of the fragmentation path and barrier tunnelling characteristics.

References

  1. 1.
    A. Sandulescu, D.N. Poenaru, W. Greiner, Sov. J. Nucl. 11, 528 (1980)Google Scholar
  2. 2.
    H.J. Rose, G.A. Jones, Nature (London) 307, 245 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    S.W. Barwick, P.B. Price, H.L. Ravn, E. Hourani, M. Hussonnois, Phys. Rev. C 34, 362 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    S. Kumar, D. Bir, R.K. Gupta, Phys. Rev. C 51, 4 (1995)Google Scholar
  5. 5.
    S. Kumar, J.S. Batra, R.K. Gupta, J. Phys. G: Nucl. Part. Phys. 22, 215 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    A. Guglielmetti, R. Bonetti, G. Poli, R. Collatz, Z. Hu, R. Kirchner, E. Roeckl, N. Gunn, P.B. Price, B.A. Weaver, A. Westphal, J. Szerypo, Phys. Rev. C 56, R2912 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    S. Kumar, R.K. Gupta, Phys. Rev. C 49, 1922 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    S. Kumar, D. Bir, R.K. Gupta, Phys. Rev. C 51, 1762 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    D.N. Poenaru, D. Schnabel, W. Greiner, D. Mazilu, R. Gherghescu, At. Data Nucl. Data Tables 48, 231 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    D.N. Poenaru, W. Greiner, E. Hourani, Phys. Rev. C 51, 594 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    S.K. Arun, R.K. Gupta, B.B. Singh, S. Kanwar, M.K. Sharma, Phys. Rev. C 79, 064616 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    S.K. Arun, R.K. Gupta, S. Kanwar, B.B. Singh, M.K. Sharma, Phys. Rev. C 80, 034317 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    R.K. Gupta, M. Balasubramaniam, R. Kumar, N. Singh, M. Manhas, W. Greiner, J. Phys. G: Nucl. Part. Phys. 31, 631 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    G. Sawhney, M.K. Sharma, R.K. Gupta, Phys. Rev. C 83, 064610 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    G. Sawhney, K. Sharma, M.K. Sharma, Raj K. Gupta, EPJ Web of Conferences 117, 04013 (2016)CrossRefGoogle Scholar
  17. 17.
    R.K. Gupta, in Heavy Elements and Related New Phenomena, Vol. II, edited by W. Greiner, R.K. Gupta (World Scientific, Singapore, 1999) Chapt. 18, p. 730Google Scholar
  18. 18.
    R.K. Gupta, in Proceedings of the 5th International Conference on Nuclear Reaction Mechanisms, edited by E. Gadioli (Ricerca Scientifica ed Educazione Permanente, Milan, 1988) p. 416Google Scholar
  19. 19.
    R. Kumar, M.K. Sharma, Phys. Rev. C 85, 054612 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    G. Sawhney, K. Sandhu, M.K. Sharma, R.K. Gupta, Eur. Phys. J. A 50, 175 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    J. Maruhn, W. Greiner, Phys. Rev. Lett. 32, 548 (1974)ADSCrossRefGoogle Scholar
  22. 22.
    R.K. Gupta, W. Scheid, W. Greiner, Phys. Rev. Lett. 35, 353 (1975)ADSCrossRefGoogle Scholar
  23. 23.
    H.J. Fink, J. Maruhn, W. Scheid, W. Greiner, Z. Phys. 268, 321 (1974)ADSCrossRefGoogle Scholar
  24. 24.
    G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    H. Kröger, W. Scheid, J. Phys. G 6, L85 (1980)CrossRefGoogle Scholar
  26. 26.
    M. Greiner, W. Scheid, J. Phys. G: Nucl. Part. Phys. 12, L229 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    P. Möller, J.R. Nix, Nucl. Phys. A 361, 117 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    W. Reisdorf, J. Phys. G: Nucl. Part. Phys. 20, 1297 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    W.D. Myers, W.J. Swiatecki, Phys. Rev. C 62, 044610 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kanishka Sharma
    • 1
  • Gudveen Sawhney
    • 1
    Email author
  • Manoj K. Sharma
    • 1
  • Raj K. Gupta
    • 2
  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia
  2. 2.Department of PhysicsPanjab UniversityChandigarhIndia

Personalised recommendations