Advertisement

A digital pulse fitting method for the \( \alpha\) decay studies of short-lived nuclei

  • H. B. Yang
  • Z. G. GanEmail author
  • Z. Y. Zhang
  • M. M. Zhang
  • M. H. Huang
  • L. Ma
  • C. L. Yang
Special Article - New Tools and Techniques
  • 28 Downloads

Abstract.

When studying short-lived nuclei via \( \alpha\) spectroscopic methods at recoil separators, the decay events tend to happen immediately after the recoil implantations or the decays of parent nuclei and therefore pile-up pulses are often encountered. Digital acquisition systems now allow the recording of waveforms of pile-up events rather than rejecting them as in traditional analog systems. Therefore, the extraction of the energy and time information stored in pile-up events with suitable precision is of great significance to the measurements of short-lived nuclei. In this paper, a pulse shape fitting method for processing pile-up events from silicon detectors are proposed. The method is developed on the basis of an improved analytical function for describing the shapes of preamplifier signals. The validity of the method is demonstrated by the experimental data of some short-lived nuclei produced in the reaction 40Ca + 184W.

References

  1. 1.
    H.B. Yang et al., Phys. Lett. B 777, 212 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    T.H. Huang et al., Phys. Rev. C 96, 014324 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    M.D. Sun et al., Phys. Lett. B 771, 303 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    J. Khuyagbaatar et al., Phys. Rev. Lett. 115, 242502 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    V.T. Jordanov, G.F. Knoll, Nucl. Instrum. Methods Phys. Res. A 345, 337 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    V.T. Jordanov et al., Nucl. Instrum. Methods Phys. Res. A 353, 261 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    T. Kihm, V.F. Bobrakov, H.V. Klapdor-Kleingrothaus, Nucl. Instrum. Methods Phys. Res. A 498, 334 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    M. Nakhostin, IEEE Trans. Nucl. Sci. 58, 2378 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    MC2Analyzer User Manual, https://doi.org/www.caen.it
  10. 10.
    H. Zhang et al., Nucl. Sci. Tech. 24, 060407 (2013)Google Scholar
  11. 11.
    M. Karny et al., Phys. Rev. Lett. 90, 012502 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    R. Grzywacz et al., Nucl. Instrum. Methods Phys. Res. B 261, 1103 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    S.N. Liddick, I.G. Darby, R.K. Grzywacz, Nucl. Instrum. Methods Phys. Res. A 669, 70 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    R. Grzywacz et al., Eur. Phys. J. A 25, 145 (2005)CrossRefGoogle Scholar
  15. 15.
    S.N. Liddick et al., Phys. Rev. Lett. 97, 082501 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    I.G. Darby et al., Phys. Rev. Lett. 105, 162502 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    S. Suchyta et al., Phys. Rev. C 89, 021301(R) (2014)ADSCrossRefGoogle Scholar
  18. 18.
    N.T. Brewer et al., Phys. Rev. C 98, 024317 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    X.L. Luo et al., Nucl. Instrum. Methods Phys. Res. A 897, 59 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    M. Nakhostin et al., Rev. Sci. Instrum. 81, 103507 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    F. Belli et al., Nucl. Instrum. Methods Phys. Res. A 595, 512 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    T. Oishi, M. Baba, J. Nucl. Sci. Technol. 45, 375 (2008)CrossRefGoogle Scholar
  23. 23.
    W. Guo, R.P. Gardner, C.W. Mayo, Nucl. Instrum. Methods Phys. Res. A 544, 668 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    S. Marrone, Nucl. Instrum. Methods Phys. Res. B 213, 246 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Guzik, T. Krakowski, Nukleonika 58, 333 (2013)Google Scholar
  26. 26.
    Z.Y. Zhang et al., Nucl. Instrum. Methods Phys. Res. B 317, 315 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Digitizer V1724, https://doi.org/www.caen.it
  28. 28.
    R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    K.-H. Schmidt et al., Z. Phys. A 316, 19 (1984)ADSCrossRefGoogle Scholar
  30. 30.
  31. 31.
    A. Lopez-Martens et al., Eur. Phys. J. A 50, 132 (2014)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • H. B. Yang
    • 1
  • Z. G. Gan
    • 1
    Email author
  • Z. Y. Zhang
    • 1
  • M. M. Zhang
    • 1
    • 2
  • M. H. Huang
    • 1
  • L. Ma
    • 1
  • C. L. Yang
    • 1
  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations