Advertisement

Study of the reaction mechanisms of 136Xe + p and 136Xe + 12C at 1 A GeV with inverse kinematics and large-acceptance detectors

  • Thomas Gorbinet
  • Orlin Yordanov
  • Jean-Eric DucretEmail author
  • Thomas Aumann
  • Yassid Ayyad
  • Sébastien Bianchin
  • Olga Borodina
  • Alain Boudard
  • Christoph Caesar
  • Enrique Casarejos
  • Bronislaw Czech
  • Stanislav Hlavac
  • Josef Klimo
  • Nikolaus Kurz
  • Christoph Langer
  • Tudy Le Bleis
  • Sylvie Leray
  • Jerzy Lukasik
  • Davide Mancusi
  • Piotr Pawlowski
  • Stéphane Pietri
  • Christopher Rappold
  • Marie-Delphine Salsac
  • Haik Simon
  • Martin Veselsky
Regular Article - Experimental Physics
  • 17 Downloads

Abstract.

The reactions 136Xe + p and 136Xe + 12C have been studied in inverse kinematics at 1 A GeV with the SPALADiN setup at GSI. The detection in coincidence of the final-state charged particles (projectile residues, nuclei of charge \( Z \geq 2\) and neutrons was performed with a big-aperture dipole magnet and large-acceptance detectors. This provided an extended coverage of the phase space of decay products of the prefragment formed at the end of the intranuclear cascade. This coincidence measurement, performed on an event-by-event basis permits both an estimate of the excitation energy of the prefragments and a determination of their deexcitation channels. The element production cross sections are compared with existing data and theoretical models. The evolution of observables such as the total multiplicity or the fragment production with the prefragment’s excitation energy is studied for both reactions and compared with models.

References

  1. 1.
    S. Wang and the EOS Collaboration, Phys. Rev. Lett. 74, 2646 (1995)CrossRefGoogle Scholar
  2. 2.
    W.G. Lynch, Annu. Rev. Nucl. Part. Sci. 37, 493 (1987)CrossRefGoogle Scholar
  3. 3.
    The European Spallation Source, https://doi.org/europeanspallationsource.se
  4. 4.
    H.A. Abderrahim et al., Nucl. Instrum. Methods A 463, 487 (2001)CrossRefGoogle Scholar
  5. 5.
    H. Geissel et al., Nucl. Instrum. Methods B 70, 286 (1992)CrossRefGoogle Scholar
  6. 6.
    J. Hubele et al., Z. Phys. A 340, 263 (1991)CrossRefGoogle Scholar
  7. 7.
    A. Schüttauf et al., Nucl. Phys. A 607, 457 (1996) and references thereinCrossRefGoogle Scholar
  8. 8.
    E. Le Gentil et al., Phys. Rev. Lett. 100, 022701 (2008)CrossRefGoogle Scholar
  9. 9.
    W.R. Binns et al., Phys. Rev. C 36, 1870 (1987)CrossRefGoogle Scholar
  10. 10.
    E. Le Gentil, PhD Thesis, University of Evry (2006)Google Scholar
  11. 11.
    P. Chesny, SPALADiN target user and safety report (2007)Google Scholar
  12. 12.
    M. Pfützner et al., Nucl. Instrum. Methods B 86, 213 (1994)CrossRefGoogle Scholar
  13. 13.
    T. Gorbinet, PhD Thesis, University Paris-Sud (2011)Google Scholar
  14. 14.
    P. Kreutz, Scientific Report GSI (1988) p. 213. Google Scholar
  15. 15.
    J. Hubele, Scientific Report GSI (1989) p. 268Google Scholar
  16. 16.
    T. Blaich et al., Nucl. Instrum. Methods A 314, 136 (1992)CrossRefGoogle Scholar
  17. 17.
    W. Trautmann and the ALADIN 2000 Collaboration, Int. J. Mod. Phys. E 17, 136 (2008)Google Scholar
  18. 18.
    C. Sfienti and the ALADIN 2000 Collaboration, Phys. Rev. Lett. 102, 152701 (2009)CrossRefGoogle Scholar
  19. 19.
    P. Pawlowski et al., Nucl. Instrum. Methods A 694, 47 (2012)CrossRefGoogle Scholar
  20. 20.
    P. Napolitani et al., Phys. Rev. C 76, 064609 (2007)CrossRefGoogle Scholar
  21. 21.
    J. Jaros et al., Phys. Rev. C 18, 2273 (1978)CrossRefGoogle Scholar
  22. 22.
    R.K. Tripathi et al., Nucl. Instrum. Methods B 129, 11 (1997)CrossRefGoogle Scholar
  23. 23.
    GEANT4 Collaboration, https://doi.org/geant4.cern.ch
  24. 24.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)CrossRefGoogle Scholar
  25. 25.
    J. Cugnon et al., Nucl. Phys. A 352, 505 (1981)CrossRefGoogle Scholar
  26. 26.
    A. Boudard et al., Phys. Rev. C 66, 044615 (2002)CrossRefGoogle Scholar
  27. 27.
    J. Cugnon et al., J. Korean Phys. Soc. 59, 955 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Boudard et al., Phys. Rev. C 87, 014606 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Leray et al., J. Phys. Conf. Series 420, 012065 (2013)CrossRefGoogle Scholar
  30. 30.
    D. Mancusi et al., Phys. Rev. C 90, 054602 (2014)CrossRefGoogle Scholar
  31. 31.
    J.-J. Gaimard, K.H. Schmidt, Nucl. Phys. A 531, 709 (1991)CrossRefGoogle Scholar
  32. 32.
    A. Kelic, in Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reaction (IAEA, Trieste, Italy, 2008) p. 181Google Scholar
  33. 33.
    R.J. Charity et al., Nucl. Phys. A 483, 371 (1988)CrossRefGoogle Scholar
  34. 34.
    R.J. Charity, Phys. Rev. C 82, 014610 (2010)CrossRefGoogle Scholar
  35. 35.
    J.P. Bondorf et al., Phys. Rep. 257, 133 (1995)CrossRefGoogle Scholar
  36. 36.
    D. Mancusi et al., Phys. Rev. C 84, 064605 (2011)CrossRefGoogle Scholar
  37. 37.
    P. Napolitani et al., J. Phys. G 38, 064609 (2011)CrossRefGoogle Scholar
  38. 38.
    A.A. Kotov et al., Nucl. Phys. A 583, 575 (1995)CrossRefGoogle Scholar
  39. 39.
    J.B. Natowitz et al., Phys. Rev. C 65, 034618 (2002)CrossRefGoogle Scholar
  40. 40.
    V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)CrossRefGoogle Scholar
  41. 41.
    W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)CrossRefGoogle Scholar
  42. 42.
    L.G. Moretto, Nucl. Phys. A 247, 211 (1975)CrossRefGoogle Scholar
  43. 43.
    A. Sierk, Phys. Rev. Lett. 55, 582 (1985)CrossRefGoogle Scholar
  44. 44.
    N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)CrossRefGoogle Scholar
  45. 45.
    J.C. David, in SATIF 10 Workshop Proceedings (OECD Publishing, 2011) p. 273Google Scholar
  46. 46.
    S. Leray et al., J. Korean. Phys. Soc. 59, 791 (2011)CrossRefGoogle Scholar
  47. 47.
    IAEA benchmark of spallation models, https://doi.org/www-nds.iaea.org/spallations
  48. 48.
    J. Alcántara-Núñez et al., Phys. Rev. C 92, 054602 (2015)CrossRefGoogle Scholar
  49. 49.
    W.A. Friedman, Phys. Rev. Lett. 60, 2125 (1988)CrossRefGoogle Scholar
  50. 50.
    D. Mancusi et al., Phys. Rev. C 82, 044610 (2010)CrossRefGoogle Scholar
  51. 51.
    S. Furihata, Nucl. Instrum. Methods B 171, 251 (2000)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thomas Gorbinet
    • 1
  • Orlin Yordanov
    • 2
  • Jean-Eric Ducret
    • 1
    • 3
    • 4
    Email author
  • Thomas Aumann
    • 5
    • 6
  • Yassid Ayyad
    • 7
  • Sébastien Bianchin
    • 6
  • Olga Borodina
    • 6
  • Alain Boudard
    • 1
  • Christoph Caesar
    • 6
  • Enrique Casarejos
    • 8
  • Bronislaw Czech
    • 9
  • Stanislav Hlavac
    • 10
  • Josef Klimo
    • 10
  • Nikolaus Kurz
    • 6
  • Christoph Langer
    • 6
  • Tudy Le Bleis
    • 6
  • Sylvie Leray
    • 1
  • Jerzy Lukasik
    • 9
  • Davide Mancusi
    • 11
  • Piotr Pawlowski
    • 9
  • Stéphane Pietri
    • 6
  • Christopher Rappold
    • 6
  • Marie-Delphine Salsac
    • 1
  • Haik Simon
    • 6
  • Martin Veselsky
    • 10
  1. 1.IRFU, CEA, Université Paris-SaclayGif-sur-YvetteFrance
  2. 2.Institute of Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Centre Lasers Intenses et ApplicationsUMR 5106 CEA CNRS Université de BordeauxTalenceFrance
  4. 4.GANILCaenFrance
  5. 5.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  6. 6.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  7. 7.University of Santiago de CompostellaS. de CompostellaSpain
  8. 8.University of VigoVigo, PontevedraSpain
  9. 9.Institute of Nuclear PhysicsPolish Academy of SciencesKrakowPoland
  10. 10.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  11. 11.DEN-Service d’études des réacteurs et de mathématiques appliquées (SERMA), CEAUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations