Advertisement

Strongly intensive observable between multiplicities in two acceptance windows in a string model

  • Evgeny Andronov
  • Vladimir VecherninEmail author
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract.

The strongly intensive observable between multiplicities in two acceptance windows separated in rapidity and azimuth is calculated in the model with quark-gluon strings acting as sources. The dependence of this observable on the two-particle correlation function of a string, the width of observation windows and the rapidity gap between them is analyzed. In the case with independent identical strings, the model calculation confirms the strongly intensive character of this observable: it is independent of both the mean number of string and its fluctuation. For this case, the peculiarities of its behavior for particles with different electric charges are also analyzed. In the case when the string fusion processes are taken into account, and a formation of strings of a few different types takes place in a collision, this observable is proved to be equal to a weighted average of its values for different string types. Unfortunately, in this case, through the weight factors the observable becomes dependent on collision conditions and, strictly speaking, cannot be considered anymore as a strongly intensive variable. For comparison, the results of the calculation of the considered observable with the PYTHIA event generator are also presented.

References

  1. 1.
    A. Dumitru, F. Gelis, L. McLerran, R. Venugopalan, Nucl. Phys. A 810, 91 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    T.S. Biro, H.B. Nielsen, J. Knoll, Nucl. Phys. B 245, 449 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    A. Bialas, W. Czyz, Nucl. Phys. B 267, 242 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Braun, C. Pajares, Phys. Lett. B 287, 154 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Braun, C. Pajares, Nucl. Phys. B 390, 542 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    N.S. Amelin et al., Phys. Rev. Lett. 73, 2813 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Braun, C. Pajares, Phys. Rev. Lett. 85, 4864 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Braun, R.S. Kolevatov, C. Pajares, V.V. Vechernin, Eur. Phys. J. C 32, 535 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    ALICE Collaboration et al., J. Phys. G 32, 1295 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    V.V. Vechernin, R.S. Kolevatov, Phys. At. Nucl. 70, 1797 (2007)CrossRefGoogle Scholar
  11. 11.
    V.V. Vechernin, R.S. Kolevatov, Phys. At. Nucl. 70, 1809 (2007)CrossRefGoogle Scholar
  12. 12.
    V.V. Vechernin, Theor. Math. Phys. 184, 1271 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    V.V. Vechernin, Theor. Math. Phys. 190, 251 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M.I. Gorenstein, M. Gazdzicki, Phys. Rev. C 84, 014904 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    E.V. Andronov, Theor. Math. Phys. 185, 1383 (2015)CrossRefGoogle Scholar
  16. 16.
    M.A. Braun, C. Pajares, V.V. Vechernin, Phys. Lett. B 493, 54 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    A. Capella, A. Krzywicki, Phys. Rev. D 18, 4120 (1978)ADSCrossRefGoogle Scholar
  18. 18.
    V. Vechernin, Nucl. Phys. A 939, 21 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    C. Pruneau, S. Gavin, S. Voloshin, Phys. Rev. C 66, 044904 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    S. Uhlig, I. Derado, R. Meinke, H. Preissner, Nucl. Phys. B 132, 15 (1978)ADSCrossRefGoogle Scholar
  21. 21.
    M. Derrick et al., Phys. Rev. D 34, 3304 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 74, 011901 (2006)CrossRefGoogle Scholar
  23. 23.
    ALICE Collaboration (J. Adam et al.), JHEP 05, 097 (2015)ADSGoogle Scholar
  24. 24.
    E. Andronov for the NA61/SHINE Collaboration, J. Phys. Conf. Ser. 668, 012036 (2016)CrossRefGoogle Scholar
  25. 25.
    ALICE Collaboration (J. Adam et al.), Eur. Phys. J. C 76, 86 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    T. Sjostrand et al., Comput. Phys. Commun. 191, 159 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    T. Sjostrand, S. Mrenna, P. Skands, JHEP 05, 026 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    C.-Y. Wong, Phys. Rev. D 92, 074007 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    ALICE Collaboration (J. Adam et al.), Nat. Phys. 13, 535 (2017)CrossRefGoogle Scholar
  30. 30.
    C. Bierlich, G. Gustafson, L. Lonnblad, A. Tarasov, JHEP 03, 148 (2015) arXiv:1412.6259CrossRefGoogle Scholar
  31. 31.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 728, 25 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    ALICE Collaboration (J. Adam et al.), Phys. Lett. B 758, 389 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 728, 216 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    V.V. Vechernin, R.S. Kolevatov, Vestn. Peterb. Univ., Ser. 4: Fiz. Khim. 4, 11 (2004) arXiv:hep-ph/0305136Google Scholar
  35. 35.
    M.A. Braun, C. Pajares, Eur. Phys. J. C 71, 1558 (2011)ADSGoogle Scholar
  36. 36.
    M.A. Braun, C. Pajares, V.V. Vechernin, Nucl. Phys. A 906, 14 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    M.A. Braun, C. Pajares, V.V. Vechernin, Eur. Phys. J. A 51, 44 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    V. Kovalenko, V. Vechernin, EPJ Web of Conferences 66, 04015 (2014)CrossRefGoogle Scholar
  39. 39.
    V.N. Kovalenko, Phys. At. Nucl. 76, 1189 (2013)CrossRefGoogle Scholar
  40. 40.
    V. Kovalenko, V. Vechernin, PoS Baldin-ISHEPP-XXI, 077 (2012)Google Scholar
  41. 41.
    E. Levin, A.H. Rezaeian, Phys. Rev. D 84, 034031 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    A. Kovner, M. Lublinsky, Phys. Rev. D 83, 034017 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    X. Artru, Phys. Rep. 97, 147 (1983)ADSCrossRefGoogle Scholar
  44. 44.
    K. Werner, Phys. Rep. 232, 87 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    V.V. Vechernin, in Proceedings of the Baldin ISHEPP XIX, Vol. 1 (JINR, Dubna, 2008) pp. 276--281Google Scholar
  46. 46.
    A. Titov, V. Vechernin, PoS Baldin-ISHEPP-XXI, 047 (2013)Google Scholar
  47. 47.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 024906 (2009)CrossRefGoogle Scholar
  48. 48.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 110, 152301 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    B. Andersson et al., Phys. Rep. 97, 31 (1983)ADSCrossRefGoogle Scholar
  50. 50.
    P. Skands, S. Carrazza, J. Rojo, Eur. Phys. J. C 74, 3024 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    B. Efron, Biometrika 68, 589 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations