Strongly intensive observable between multiplicities in two acceptance windows in a string model
- 20 Downloads
Abstract.
The strongly intensive observable between multiplicities in two acceptance windows separated in rapidity and azimuth is calculated in the model with quark-gluon strings acting as sources. The dependence of this observable on the two-particle correlation function of a string, the width of observation windows and the rapidity gap between them is analyzed. In the case with independent identical strings, the model calculation confirms the strongly intensive character of this observable: it is independent of both the mean number of string and its fluctuation. For this case, the peculiarities of its behavior for particles with different electric charges are also analyzed. In the case when the string fusion processes are taken into account, and a formation of strings of a few different types takes place in a collision, this observable is proved to be equal to a weighted average of its values for different string types. Unfortunately, in this case, through the weight factors the observable becomes dependent on collision conditions and, strictly speaking, cannot be considered anymore as a strongly intensive variable. For comparison, the results of the calculation of the considered observable with the PYTHIA event generator are also presented.
References
- 1.A. Dumitru, F. Gelis, L. McLerran, R. Venugopalan, Nucl. Phys. A 810, 91 (2008)ADSCrossRefGoogle Scholar
- 2.T.S. Biro, H.B. Nielsen, J. Knoll, Nucl. Phys. B 245, 449 (1984)ADSCrossRefGoogle Scholar
- 3.A. Bialas, W. Czyz, Nucl. Phys. B 267, 242 (1986)ADSCrossRefGoogle Scholar
- 4.M.A. Braun, C. Pajares, Phys. Lett. B 287, 154 (1992)ADSCrossRefGoogle Scholar
- 5.M.A. Braun, C. Pajares, Nucl. Phys. B 390, 542 (1993)ADSCrossRefGoogle Scholar
- 6.N.S. Amelin et al., Phys. Rev. Lett. 73, 2813 (1994)ADSCrossRefGoogle Scholar
- 7.M.A. Braun, C. Pajares, Phys. Rev. Lett. 85, 4864 (2000)ADSCrossRefGoogle Scholar
- 8.M.A. Braun, R.S. Kolevatov, C. Pajares, V.V. Vechernin, Eur. Phys. J. C 32, 535 (2004)ADSCrossRefGoogle Scholar
- 9.ALICE Collaboration et al., J. Phys. G 32, 1295 (2006)ADSCrossRefGoogle Scholar
- 10.V.V. Vechernin, R.S. Kolevatov, Phys. At. Nucl. 70, 1797 (2007)CrossRefGoogle Scholar
- 11.V.V. Vechernin, R.S. Kolevatov, Phys. At. Nucl. 70, 1809 (2007)CrossRefGoogle Scholar
- 12.V.V. Vechernin, Theor. Math. Phys. 184, 1271 (2015)MathSciNetCrossRefGoogle Scholar
- 13.V.V. Vechernin, Theor. Math. Phys. 190, 251 (2017)MathSciNetCrossRefGoogle Scholar
- 14.M.I. Gorenstein, M. Gazdzicki, Phys. Rev. C 84, 014904 (2011)ADSCrossRefGoogle Scholar
- 15.E.V. Andronov, Theor. Math. Phys. 185, 1383 (2015)CrossRefGoogle Scholar
- 16.M.A. Braun, C. Pajares, V.V. Vechernin, Phys. Lett. B 493, 54 (2000)ADSCrossRefGoogle Scholar
- 17.A. Capella, A. Krzywicki, Phys. Rev. D 18, 4120 (1978)ADSCrossRefGoogle Scholar
- 18.V. Vechernin, Nucl. Phys. A 939, 21 (2015)ADSCrossRefGoogle Scholar
- 19.C. Pruneau, S. Gavin, S. Voloshin, Phys. Rev. C 66, 044904 (2002)ADSCrossRefGoogle Scholar
- 20.S. Uhlig, I. Derado, R. Meinke, H. Preissner, Nucl. Phys. B 132, 15 (1978)ADSCrossRefGoogle Scholar
- 21.M. Derrick et al., Phys. Rev. D 34, 3304 (1986)ADSCrossRefGoogle Scholar
- 22.PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 74, 011901 (2006)CrossRefGoogle Scholar
- 23.ALICE Collaboration (J. Adam et al.), JHEP 05, 097 (2015)ADSGoogle Scholar
- 24.E. Andronov for the NA61/SHINE Collaboration, J. Phys. Conf. Ser. 668, 012036 (2016)CrossRefGoogle Scholar
- 25.ALICE Collaboration (J. Adam et al.), Eur. Phys. J. C 76, 86 (2016)ADSCrossRefGoogle Scholar
- 26.T. Sjostrand et al., Comput. Phys. Commun. 191, 159 (2015)ADSCrossRefGoogle Scholar
- 27.T. Sjostrand, S. Mrenna, P. Skands, JHEP 05, 026 (2006)ADSCrossRefGoogle Scholar
- 28.C.-Y. Wong, Phys. Rev. D 92, 074007 (2015)ADSCrossRefGoogle Scholar
- 29.ALICE Collaboration (J. Adam et al.), Nat. Phys. 13, 535 (2017)CrossRefGoogle Scholar
- 30.C. Bierlich, G. Gustafson, L. Lonnblad, A. Tarasov, JHEP 03, 148 (2015) arXiv:1412.6259CrossRefGoogle Scholar
- 31.ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 728, 25 (2014)ADSCrossRefGoogle Scholar
- 32.ALICE Collaboration (J. Adam et al.), Phys. Lett. B 758, 389 (2016)ADSCrossRefGoogle Scholar
- 33.ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 728, 216 (2014)ADSCrossRefGoogle Scholar
- 34.V.V. Vechernin, R.S. Kolevatov, Vestn. Peterb. Univ., Ser. 4: Fiz. Khim. 4, 11 (2004) arXiv:hep-ph/0305136Google Scholar
- 35.M.A. Braun, C. Pajares, Eur. Phys. J. C 71, 1558 (2011)ADSGoogle Scholar
- 36.M.A. Braun, C. Pajares, V.V. Vechernin, Nucl. Phys. A 906, 14 (2013)ADSCrossRefGoogle Scholar
- 37.M.A. Braun, C. Pajares, V.V. Vechernin, Eur. Phys. J. A 51, 44 (2015)ADSCrossRefGoogle Scholar
- 38.V. Kovalenko, V. Vechernin, EPJ Web of Conferences 66, 04015 (2014)CrossRefGoogle Scholar
- 39.V.N. Kovalenko, Phys. At. Nucl. 76, 1189 (2013)CrossRefGoogle Scholar
- 40.V. Kovalenko, V. Vechernin, PoS Baldin-ISHEPP-XXI, 077 (2012)Google Scholar
- 41.E. Levin, A.H. Rezaeian, Phys. Rev. D 84, 034031 (2011)ADSCrossRefGoogle Scholar
- 42.A. Kovner, M. Lublinsky, Phys. Rev. D 83, 034017 (2011)ADSCrossRefGoogle Scholar
- 43.X. Artru, Phys. Rep. 97, 147 (1983)ADSCrossRefGoogle Scholar
- 44.K. Werner, Phys. Rep. 232, 87 (1993)ADSCrossRefGoogle Scholar
- 45.V.V. Vechernin, in Proceedings of the Baldin ISHEPP XIX, Vol. 1 (JINR, Dubna, 2008) pp. 276--281Google Scholar
- 46.A. Titov, V. Vechernin, PoS Baldin-ISHEPP-XXI, 047 (2013)Google Scholar
- 47.STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 024906 (2009)CrossRefGoogle Scholar
- 48.ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 110, 152301 (2013)ADSCrossRefGoogle Scholar
- 49.B. Andersson et al., Phys. Rep. 97, 31 (1983)ADSCrossRefGoogle Scholar
- 50.P. Skands, S. Carrazza, J. Rojo, Eur. Phys. J. C 74, 3024 (2014)ADSCrossRefGoogle Scholar
- 51.B. Efron, Biometrika 68, 589 (1981)MathSciNetCrossRefGoogle Scholar