Advertisement

Low-lying dipole strengths for probable p-wave one-neutron halos in the medium mass region

  • ManjuEmail author
  • Jagjit Singh
  • Shubhchintak
  • R. Chatterjee
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract.

The one-neutron halos lying in the island of inversion around \( N=20\) has provided the podium to study the variation of total low-lying dipole strength with the neutron separation energy. We study three probable p -wave one-neutron halo candidates 31Ne and 34Na and 37Mg lying in the island of inversion. A simple analytic model has been used for the calculation of the total low-lying dipole strength for the medium mass p -wave one-neutron halos. A correction factor to this analytical model has been estimated with a realistic Woods-Saxon potential. A comparison of these analytic calculations has been made with those performed by a finite-range distorted-wave Born approximation theory of the Coulomb dissociation. We also make an estimate of the one-neutron separation energies of 31Ne, 34Na and 37Mg.

References

  1. 1.
    I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    N. Kobayashi et al., Phys. Rev. Lett. 112, 242501 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    P.G. Hansen, A.S. Jensen, B. Jonson, Annu. Rev. Nucl. Part. Sci. 45, 591 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    T. Aumann et al., Phys. Rev. C 59, 1252 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    F. Catara, C.H. Dasso, A. Vitturi, Nucl. Phys. A 602, 181 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    A. Bracco, P.F. Bortignon (Editors), Proceedings of the Giant Resonances Conference, Varenna, Italy, 11–16 May 1998, Nucl. Phys. A 649, (1999)Google Scholar
  8. 8.
    T. Wasaka, M. Fujiwara, M. Nomachi, H. Ejiri (Editors), Proceedings of the GR2000 Conference, Osaka, Nucl. Phys. A 687, (2001). Google Scholar
  9. 9.
    C.A. Bertulani, G. Baur, M.S. Hussein, Nucl. Phys. A 526, 751 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    C.A. Bertulani, A. Sustich, Phys. Rev. C 46, 6 (1992)CrossRefGoogle Scholar
  11. 11.
    M.A. Nagarajan, S.M. Lenzi, A. Vitturi, Eur. Phys. J. A 24, 63 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    S. Typel, G. Baur, Nucl. Phys. A 759, 247 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41, 1147 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    N. Orr et al., Phys. Lett. B 258, 29 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    A. Poves, J. Retamosa, Nucl. Phys. A 571, 221 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    P. Descouvemont, Nucl. Phys. A 655, 440 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    T. Nakamura et al., Phys. Rev. Lett. 103, 262501 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    I. Hamamoto, Phys. Rev. C 81, 021304(R) (2010)ADSCrossRefGoogle Scholar
  19. 19.
    W. Horiuchi, Phys. Rev. C 81, 024606 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    M. Takechi et al., Phys. Lett. B 707, 357 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Shubhchintak, R. Chatterjee, Nucl. Phys. A 922, 99 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Juhee Hong, C.A. Bertulani, A.T. Kruppa, Phys. Rev. C 96, 064603 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    B. Jurado et al., Phys. Lett. 101, 023210 (2007)Google Scholar
  24. 24.
    L. Gaudefroy et al., Phys. Rev. Lett. 109, 202503 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    T. Nakamura et al., Phys. Rev. Lett. 112, 142501 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    C. Ouellet, B. Singh, Nucl. Data Sheets 114, 209 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    H.T. Fortune, R. Sherr, Phys. Rev. C 87, 057308 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    P. Doornenbal et al., Prog. Theor. Exp. Phys. 2014, 053D01 (2014)CrossRefGoogle Scholar
  29. 29.
    G. Singh, Shubhchintak, R. Chatterjee, Phys. Rev. C 94, 024606 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Shubhchintak, Neelam, R. Chatterjee, R. Shyam, K. Tsushima, Nucl. Phys. A 939, 101 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    N. Nica, B. Singh, Nucl. Data Sheets 113, 1563 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012)CrossRefGoogle Scholar
  33. 33.
    R. Chatterjee, P. Banerjee, R. Shyam, Nucl. Phys. A 675, 477 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    C.A. Bertulani, G. Baur, Phys. Rep. 163, 299 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    M.S. Hussein, M.P. Pato, C.A. Bertulani, Phys. Rev. C 44, 2219 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    G.F. Bertsch, H. Esbensen, Ann. Phys. (N.Y.) 209, 327 (1991)ADSCrossRefGoogle Scholar
  37. 37.
    H. Esbensen, G.F. Bertsch, Nucl. Phys. A 542, 310 (1992)ADSCrossRefGoogle Scholar
  38. 38.
    T. Nakamura et al., Phys. Lett. B 331, 296 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    C.A. Bertulani, G. Baur, Nucl. Phys. A 480, 615 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    T. Otsuka, M. Ishihara, N. Fukunishi, T. Nakamura, M. Yokoyama, Phys. Rev. C 49, R2289 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    D.M. Kalassa, G. Baur, J. Phys. G 22, 115 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    T. Nakamura, Y. Kondo, Clusters in Nuclei, Vol. 2, edited by C. Beck, Lect. Notes Phys. 848 (Springer, 2012) p. 67Google Scholar
  43. 43.
    T. Nakamura et al., Phys. Rev. Lett. 83, 1112 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    G. Baur, K. Hencken, D. Trautmann, Prog. Part. Nucl. Phys. 51, 487 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    H. Fuchs, Nucl. Instrum. Methods 200, 361 (1982)CrossRefGoogle Scholar
  46. 46.
    P. Banerjee, R. Chatterjee, R. Shyam, Phys. Rev. C 78, 035804 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    R. Chatterjee, R. Shyam, Prog. Part. Nucl. Phys. 103, 67 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    A. Mason, R. Chatterjee, L. Fortunato, A. Vitturi, Eur. Phys. J. A 39, 107 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    R. Chatterjee, Phys. Rev. C 68, 044604 (2003)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Manju
    • 1
    Email author
  • Jagjit Singh
    • 2
  • Shubhchintak
    • 3
  • R. Chatterjee
    • 1
  1. 1.Department of PhysicsIndian Institute of TechnologyRoorkeeIndia
  2. 2.Nuclear Reaction Data Centre, Faculty of ScienceHokkaido UniversitySapporoJapan
  3. 3.Physique Nucléaire Théorique et Physique MathématiqueUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations