Advertisement

Study of azimuthal correlations in the target fragmentation region in p, d, He, C+C, Ta and C+Ne, Cu collisions at momenta of 4.2, 4.5 and 10 A GeV/c

  • L. Chkhaidze
  • G. Chlachidze
  • T. Djobava
  • A. GaloyanEmail author
  • L. Kharkhelauri
  • R. Togoo
  • V. Uzhinsky
Regular Article - Experimental Physics
  • 14 Downloads

Abstract.

Azimuthal correlations between the same type of particles (protons or pions) in the target fragmentation region was studied in d, He, C+C, Ta (4.2A GeV/c, C+Ne, Cu (4.5A GeV/c) and p+C, Ta (10 GeV/c) interactions. The data were obtained from the SKM-200-GIBS streamer chamber and from the Propane Bubble Chamber (PBL-500) systems utilized at JINR. Study of multiparticle azimuthal correlations offers unique information about space-time evolution of the interactions. Azimuthal correlations were investigated by using correlation function \( C(\Delta\phi) = \mathrm{d} N/\mathrm{d} (\Delta\phi)\) , where \( \Delta\phi\) represents the angle between the sums of transverse momenta vectors for particles emitted in the forward and backward hemispheres. For protons “back-to-back” (“negative”) azimuthal correlations were observed in the above-mentioned interactions. The absolute values of the correlation coefficient \( \vert\xi\vert\) --the slope parameter of \( C(\Delta\phi)\), strongly depend on the mass number of the target (\( A_{T}\)) nuclei in the nucleon-nucleus and nucleus-nucleus collisions. Namely, \( \vert\xi\vert\) decreases with increase of \( A_T\) in p+C and p+Ta collisions, while \( \vert\xi\vert\) initially decreases from d+C to C+Ne and then almost does not change with increase of \( A_P\), \( A_T\) in (d+He)Ta, C+Cu and C+Ta collisions. For pions “back-to-back” correlations were obtained for light targets (C, Ne), and “side-by-side” (“positive”) correlations for heavy targets (Cu, Ta). The \( \vert\xi\vert\) insignificantly changes with increase of the momenta per nucleon and almost does not change with increase of \( A_P\) and \( A_T\). Models used for description of the data, the Ultra relativistic Quantum Molecular Dynamic (UrQMD) and Quark-Gluon String Model (QGSM), satisfactorily describe the obtained experimental results.

References

  1. 1.
    S.A. Bass et al., Nucl. Phys. A 661, 205 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    K.H. Ackermann et al., Phys. Rev. Lett. 86, 402 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    B. Zhang, M. Gyulassy, C.M. Ko, Phys. Lett. B 455, 45 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    P. Danielewicz et al., Phys. Rev. Lett. 81, 2438 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    C. Pinkenburg et al., Phys. Rev. Lett. 83, 1295 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    G. Agakishiev et al., Phys. Rev. C 85, 014901 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    K. Aamodt et al., Phys. Rev. Lett. 105, 252302 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    G. Aad et al., Phys. Lett. B 707, 330 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A.Kh. Vinitsky et al., Yad. Fiz. 54, 1636 (1991) Sov. J. Nucl. Phys. 54Google Scholar
  11. 11.
    A. Adare et al., Phys. Rev. C 94, 054910 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    H.H. Gutbrod et al., Phys. Rev. C 42, 640 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    S.A. Bass et al., Phys. Rev. C 51, 3343 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    H.A. Gustafsson et al., Z. Phys. A 321, 389 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    H.R. Schmidt et al., Nucl. Phys. A 544, 449 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    T.C. Awes et al., Phys. Lett. B 381, 29 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    L. Chkhaidze et al., Phys. Lett. B 411, 26 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    L. Chkhaidze et al., Phys. Lett. B 479, 21 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    L. Chkhaidze et al., Phys. Atom. Nucl. 67, 693 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    L. Chkhaidze et al., Phys. Atom. Nucl. 75, 811 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    L. Chkhaidze et al., Eur. Phys. J. A 1, 299 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    L. Chkhaidze et al., Eur. Phys. J. A 52, 351 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    L. Chkhaidze et al., Phys. Rev. C 65, 054903 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    L. Chkhaidze et al., Phys. Rev. C 84, 064915 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    L. Chkhaidze et al., Nucl. Phys. A 794, 115 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    L. Chkhaidze et al., Nucl. Phys. A 831, 22 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    L. Chkhaidze, T. Djobava, L. Kharkhelauri, Phys. Part. Nucl. 33, 196 (2002)Google Scholar
  28. 28.
    L. Chkhaidze, T. Djobava, L. Kharkhelauri, Phys. Atom. Nucl. 65, 1479 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    L. Chkhaidze et al., GESJ: Phys. 2, 98 (2013)Google Scholar
  30. 30.
    M. Anikina, JINR E1-84-785 (Dubna, 1998)Google Scholar
  31. 31.
    M. Anikina et al., Phys. Rev. C 33, 895 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    L. Chkhaidze et al., Bull. Georg. Acad. Sci. 164, 271 (2001)Google Scholar
  33. 33.
    G.N. Agakishiev et al., Yad. Phys. 65, 1515 (1986)Google Scholar
  34. 34.
    A.I. Bondarenko, JINR P1-98-292 (Dubna, 1998)Google Scholar
  35. 35.
    G.N. Agakishiev et al., Yad. Fiz. 43, 366 (1986)Google Scholar
  36. 36.
    D. Armutliiski et al., Yad. Fiz. 45, 1047 (1987) Sov. J. Nucl. Phys. 45Google Scholar
  37. 37.
    K.H. Kampert et al., Nucl. Phys. A 544, 183c (1991)ADSCrossRefGoogle Scholar
  38. 38.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    M. Bleicher et al., J. Phys. G 25, 1859 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    A.S. Botvina et al., Nucl. Phys. A 475, 663 (1987)ADSCrossRefGoogle Scholar
  41. 41.
    N. Amelin et al., Yad. Fiz. 51, 512 (1990) Sov. J. Nucl. Phys. 51Google Scholar
  42. 42.
    N. Amelin et al., Yad. Fiz. 52, 272 (1990) Sov. J. Nucl. Phys. 52Google Scholar
  43. 43.
    N. Amelin et al., Phys. Rev. Lett. 67, 1523 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    Kh. Abdel-Waged, Phys. Rev. C 67, 064610 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    Kh. Abdel-Waged, J. Phys. G 31, 739 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    Ch. Hartnack et al., Eur. Phys. J. A 1, 151 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    N. Amelin, JINR Preprint P2-86-837 (Dubna, 1986)Google Scholar
  48. 48.
    Th. Lister, GSI 94-1 (University of Munster, 1994)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • L. Chkhaidze
    • 1
  • G. Chlachidze
    • 2
  • T. Djobava
    • 1
  • A. Galoyan
    • 3
    Email author
  • L. Kharkhelauri
    • 1
  • R. Togoo
    • 4
  • V. Uzhinsky
    • 5
  1. 1.High Energy Physics InstituteI. Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.Fermi National Accelerator LaboratoryBataviaUSA
  3. 3.Veksler and Baldin Laboratory of High Energy PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  4. 4.Institute of Physics and Technology of the Mongolian Acad. Sci.Ulan BatorMongolia
  5. 5.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations