Advertisement

Production of \( \Lambda\)-hypernuclei and evaluation of their binding energies via the double yield ratio

  • N. BuyukcizmeciEmail author
  • A. S. Botvina
  • R. Ogul
  • A. Ergun
  • M. Bleicher
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract.

Relativistic collisions of ions, hadrons and leptons with nuclei can produce various hypernuclei by the capture of hyperons in nuclear residues. In many cases the disintegration of such hypernuclear systems can be described with statistical approaches suggesting that the fragment production is related to the binding energies of hypernuclei. We demonstrate how the hyperon binding energies can be effectively evaluated from the yields of different hyper-isotopes using the double ratio method. Its universality and the possibility to involve many different isotopes are the advantages of this method. The same procedure can also be applied for multi-strange nuclei, for which binding energies were very difficult to measure in previous hypernuclear experiments. Modifications caused by secondary de-excitation processes in hot hypernuclei are considered additionally.

References

  1. 1.
    H. Bando, T. Mottle, J. Zofka, Int. J. Mod. Phys. A 5, 4021 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    J. Schaffner, C.B. Dover, A. Gal, C. Greiner, H. Stoecker, Phys. Rev. Lett. 71, 1328 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    A. Gal, O Hashimoto, J. Pochodzalla (Editors), Special issue on Progress in Strangeness Nuclear Physics, Nucl. Phys. A, Vol. 881 (2012) pp. 1--338Google Scholar
  5. 5.
    N. Buyukcizmeci, A.S. Botvina, J. Pochodzalla, M. Bleicher, Phys. Rev. C 88, 014611 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    T. Hell, W. Weise, Phys. Rev. C 90, 045801 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    M. Danysz, J. Pniewski, Philos. Mag. 44, 348 (1953)CrossRefGoogle Scholar
  8. 8.
    The STAR Collaboration, Science 328, 58 (2010)CrossRefGoogle Scholar
  9. 9.
    ALICE Collaboration (B. Dönigus et al.), Nucl. Phys. A 904-905, 547c (2013)ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
    CBM Collaboration (I. Vassiliev et al.), JPS Conf. Proc. 17, 092001 (2017)Google Scholar
  12. 12.
    HypHI Collaboration (T.R. Saito et al.), Nucl. Phys. A 881, 218 (2012)CrossRefGoogle Scholar
  13. 13.
    https://doi.org/indico.gsi.de/event/superfrs3 (access to .pdf files via timetable and key “walldorf”)
  14. 14.
    NICA White Paper, https://doi.org/theor.jinr.ru/twiki-cgi/view/NICA/WebHome, http://nica.jinr.ru/files/BM@N
  15. 15.
    A.S. Botvina, J. Pochodzalla, Phys. Rev. C 76, 024909 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    A.S. Botvina, K.K. Gudima, J. Steinheimer, M. Bleicher, I.N. Mishustin, Phys. Rev. C 84, 064904 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    A.S. Botvina, K.K. Gudima, J. Pochodzalla, Phys. Rev. C 88, 054605 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    A.S. Botvina et al., Phys. Lett. B 742, 7 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    A.S. Botvina, K.K. Gudima, J. Steinheimer, M. Bleicher, J. Pochodzalla, Phys. Rev. C 95, 014902 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Rudy, W. Cassing et al., Z. Phys. A 351, 217 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    Th. Gaitanos, H. Lenske, U. Mosel, Phys. Lett. B 675, 297 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    T.A. Armstrong et al., Phys. Rev. C 47, 1957 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    H. Ohm et al., Phys. Rev. C 55, 3062 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    C. Rappold et al., Phys. Lett. B 747, 129 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    H. Xi et al., Z. Phys. A 359, 397 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    K. Turzo et al., Eur. Phys. J. A 21, 293 (2004)CrossRefGoogle Scholar
  28. 28.
    R.P. Scharenberg et al., Phys. Rev. C 64, 054602 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    J. Pochodzalla, Prog. Part. Nucl. Phys. 39, 443 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    R. Ogul et al., Phys. Rev. C 83, 024608 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    A.S. Botvina et al., Nucl. Phys. A 584, 737 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    D.H.E. Gross, Phys. Rep. 279, 119 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    A.S. Botvina, I.N. Mishustin, Phys. Rev. C 63, 061601(R) (2001)ADSCrossRefGoogle Scholar
  34. 34.
    W. Greiner, Int. J. Mod. Phys. E 5, 1 (1995)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    C. Samanta et al., J. Phys. G 32, 363 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    A.S. Botvina, M. Bleicher, N. Buyukcizmeci, arXiv:1711.01159 (2017)Google Scholar
  37. 37.
    M.N. Saha, Proc. R. Soc. A 99, 135 (1921)ADSCrossRefGoogle Scholar
  38. 38.
    A. Esser et al., Phys. Rev. Lett. 114, 232501 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    T.A. Armstrong et al., Phys. Rev. C 70, 024902 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    W. Neubert, A.S. Botvina, Eur. Phys. J. A 17, 559 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    L. Pienkowski et al., Phys. Rev. C 65, 064606 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    S.N. Soisson et al., J. Phys. G: Nucl. Part. Phys. 39, 115104 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    J.P. Bondorf, A.S. Botvina, I.N. Mishustin, Phys. Rev. C 58, R27 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    A. Kelic, J.B. Natowitz, K.-H. Schmidt, Eur. Phys. J. A 30, 203 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    V.E. Viola et al., Nucl. Phys. A 681, 267c (2001)ADSCrossRefGoogle Scholar
  46. 46.
    R. Ogul, A.S. Botvina, Phys. Rev. C 66, 051601(R) (2002)ADSCrossRefGoogle Scholar
  47. 47.
    N. Buyukcizmeci et al., Eur. Phys. J. A 25, 57 (2005)CrossRefGoogle Scholar
  48. 48.
    S. Hudan et al., Phys. Rev. C 67, 064613 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    A.S. Botvina, N. Buyukcizmeci, A. Ergun, R. Ogul, M. Bleicher, J. Pochodzalla, Phys. Rev. C 94, 054615 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    J. Schaffner-Bielich, Nucl. Phys. A 804, 309 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    H. Togashi et al., Phys. Rev. C 93, 035808 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    Th. Aumann, Progr. Part. Nucl. Phys. 59, 3 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    H. Geissel et al., Nucl. Instrum. Methods Phys. Res. B 204, 71 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    J. Äystö et al., Nucl. Instrum. Methods Phys. Res. B 376, 111 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    C. Scheidenberger, in Proceedings of the International Symposium on Exotic Nuclei EXON-2014, Kaliningrad, Russia, 2014 (World Scientific, 2014) https://doi.org/www.worldscientific.com/doi/abs/10.1142/9789814699464_0052

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. Buyukcizmeci
    • 1
    Email author
  • A. S. Botvina
    • 2
    • 3
  • R. Ogul
    • 1
  • A. Ergun
    • 1
  • M. Bleicher
    • 2
    • 4
    • 5
  1. 1.Department of PhysicsSelcuk UniversityKonyaTurkey
  2. 2.FIAS and ITP J.W. Goethe UniversityFrankfurt am MainGermany
  3. 3.Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia
  4. 4.GSI Helmholtz Center for Heavy Ion ResearchDarmstadtGermany
  5. 5.John-von-Neumann Institute for Computing (NIC)JülichGermany

Personalised recommendations