Advertisement

Dense matter equation of state for neutron star mergers

  • S. Lalit
  • M. A. A. Mamun
  • C. Constantinou
  • M. PrakashEmail author
Regular Article - Theoretical Physics
  • 20 Downloads
Part of the following topical collections:
  1. First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physics

Abstract.

In simulations of binary neutron star mergers, the dense matter equation of state (EOS) is required over wide ranges of density and temperature as well as under conditions in which neutrinos are trapped, and the effects of magnetic fields and rotation prevail. Here we assess the status of dense matter theory and point out the successes and limitations of approaches currently in use. A comparative study of the excluded volume (EV) and virial approaches for the \( np\alpha\) system using the equation of state of Akmal, Pandharipande and Ravenhall for interacting nucleons is presented in the sub-nuclear density regime. Owing to the excluded volume of the \( \alpha\)-particles, their mass fraction vanishes in the EV approach below the baryon density 0.1fm^-3, whereas it continues to rise due to the predominantly attractive interactions in the virial approach. The EV approach of Lattimer et al. is extended here to include clusters of light nuclei such as d, 3H and 3He in addition to \( \alpha\)-particles. Results of the relevant state variables from this development are presented and enable comparisons with related but slightly different approaches in the literature. We also comment on some of the sweet and sour aspects of the supra-nuclear EOS. The extent to which the neutron star gravitational and baryon masses vary due to thermal effects, neutrino trapping, magnetic fields and rotation are summarized from earlier studies in which the effects from each of these sources were considered separately. Increases of about \( 20\% (\gtrsim 50\%)\) occur for rigid (differential) rotation with comparable increases occurring in the presence of magnetic fields only for fields in excess of \( 10^{18}\) Gauss. Comparatively smaller changes occur due to thermal effects and neutrino trapping. Some future studies to gain further insight into the outcome of dynamical simulations are suggested.

References

  1. 1.
    B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)CrossRefGoogle Scholar
  2. 2.
    E.E. Flanagan, T. Hinderer, Phys. Rev. D 77, 021502 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Favata, Phys. Rev. Lett. 112, 101101 (2014)CrossRefGoogle Scholar
  4. 4.
    A.E.H. Love, Proc. R. Soc. A 82, 73 (1909)CrossRefGoogle Scholar
  5. 5.
    K. Thorne, A. Campolattaro, Astrophys. J. 149, 591 (1967)CrossRefGoogle Scholar
  6. 6.
    T. Hinderer, Astrophys. J. 677, 1216 (2008)CrossRefGoogle Scholar
  7. 7.
    T. Damour, A. Nagar, Phys. Rev. D 80, 084035 (2009)CrossRefGoogle Scholar
  8. 8.
    T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Phys. Rev. D 81, 123016 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Postnikov, M. Prakash, J.M. Lattimer, Phys. Rev. D 82, 024016 (2010)CrossRefGoogle Scholar
  10. 10.
    S. De, arXiv:1804.08583 (2018)Google Scholar
  11. 11.
    LIGO Scientific Collaboration, Virgo Collaboration, Astrophys. J. Lett. 848, L12 (2017)CrossRefGoogle Scholar
  12. 12.
    B. Margalit, B.D. Metzger, Astrophys. J. Lett. 850, L19 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Bauswein, H.T. Janka, Phys. Rev. Lett 108, 0111101 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Bauswein, N. Stergioulas, H.T. Janka, Eur. Phys. J. A 52, 56 (2016)CrossRefGoogle Scholar
  15. 15.
    T.W. Baumgarte, S.L. Shapiro, Numerical Relativity (Cambridge University Press, New York, 2010)Google Scholar
  16. 16.
    J.A. Faber, F.A. Rasio, Living Rev. Relativ. 15, 8 (2012)CrossRefGoogle Scholar
  17. 17.
    M. Shibata, Numerical Relativity (World Scientific, Singapore, 2015)Google Scholar
  18. 18.
    L. Baiotti, L. Rezzolla, Rep. Prog. Phys. 80, 1 (2017)CrossRefGoogle Scholar
  19. 19.
    V. Paschalidis, N. Stergioulas, Living Rev. Relativ. 20, 7 (2017)CrossRefGoogle Scholar
  20. 20.
    J.M. Lattimer, F.D. Swesty, Nucl. Phys. A 535, 331 (1991)CrossRefGoogle Scholar
  21. 21.
    S. Bernuzzi et al., Phys. Rev. D 94, 024023 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    F. Zappa, S. Bernuzzi, D. Radice, A. Perego, T. Dietrich, Phys. Rev. Lett. 120, 111101 (2018)CrossRefGoogle Scholar
  23. 23.
    D. Radice, A. Perego, F. Zappa, S. Bernuzzi, Astrophys. J. Lett. 852, L29 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)CrossRefGoogle Scholar
  25. 25.
    C.J. Horowitz, A. Schwenk, Nucl. Phys. A 776, 55 (2006)CrossRefGoogle Scholar
  26. 26.
    M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)CrossRefGoogle Scholar
  27. 27.
    D.G. Ravenhall, C.J. Pethick, J.R. Wilson, Phys. Rev. Lett. 50, 2066 (1983)CrossRefGoogle Scholar
  28. 28.
    C.J. Pethick, D.G. Ravenhall, Annu. Rev. Nucl. Part. Sci. 45, 429 (1995)CrossRefGoogle Scholar
  29. 29.
    A.S. Schneider, C. Constantinou, B. Muccioli, M. Prakash, in preparationGoogle Scholar
  30. 30.
    A. Roggeros, J. Margueron, L.F. Roberts, S. Reddy, Phys. Rev. C 97, 045804 (2018)CrossRefGoogle Scholar
  31. 31.
    C. Constantinou, B. Muccioli, M. Prakash, J.M. Lattimer, Phys. Rev. C 89, 065802 (2014)CrossRefGoogle Scholar
  32. 32.
    G. Baym, H.A. Bethe, C.J. Pethick, Nucl. Phys. A 175, 225 (1971)CrossRefGoogle Scholar
  33. 33.
    D.Q. Lamb, J.M. Lattimer, C.J. Pethick, D.G. Ravenhall, Nucl. Phys. A 432, 646 (1985)CrossRefGoogle Scholar
  34. 34.
    M. Prakash, The nuclear equation of state and neutron stars, in Nuclear equation of State, edited by A. Ansari, L. Satpathy (World Scientific, Singapore, 1996) p. 229Google Scholar
  35. 35.
    D. Page, J.M. Lattimer, M. Prakash, A.W. Steiner, Stellar superfluids, Vol. 2 in Novel Superfluids, edited by K.H. Benneman, J.B. Ketterson (Oxford University Press, Oxford, 2015) p. 505Google Scholar
  36. 36.
    C. Constantinou, B. Muccioli, M. Prakash, J.M. Lattimer, Phys. Rev. C 92, 025801 (2015)CrossRefGoogle Scholar
  37. 37.
    E. Beth, G.E. Uhlenbeck, Physica 4, 915 (1937)CrossRefGoogle Scholar
  38. 38.
    R. Venugopalan, M. Prakash, Nucl. Phys. A 546, 718 (1997)CrossRefGoogle Scholar
  39. 39.
    E. O’Connor, D. Gazit, C.J. Horowitz, A. Schwenk, N. Barnea, Phys. Rev. C 75, 055803 (2007)CrossRefGoogle Scholar
  40. 40.
    A. Arcones et al., Phys. Rev. C 78, 015806 (2008)CrossRefGoogle Scholar
  41. 41.
    G. Shen, C.J. Horowitz, S. Teige, Phys. Rev. C 82, 045802 (2010)CrossRefGoogle Scholar
  42. 42.
    S. Typel, Eur. Phys. J. A 52, 16 (2016)CrossRefGoogle Scholar
  43. 43.
    H. Pais, S. Typel, Comparison of equation of state models with different cluster dissolution mechanisms, in Nuclear Particle Correlations and Cluster Physics, edited by W.U. Schröder (World Scientific Publishing Co. Pte. Ltd., Singapore, 2017) p. 95Google Scholar
  44. 44.
    C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd edition (Cambridge University Press, Cambridge, 2008)Google Scholar
  45. 45.
    A. Burrows, J.M. Lattimer, Astrophys. J. 285, 294 (1984)CrossRefGoogle Scholar
  46. 46.
    A.S. Schneider, L.F. Roberts, C.D. Ott, Phys. Rev. C 96, 065802 (2017)CrossRefGoogle Scholar
  47. 47.
    J.M. Lattimer, M. Prakash, Phys. Rep. 621, 127 (2016)MathSciNetCrossRefGoogle Scholar
  48. 48.
    J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001)CrossRefGoogle Scholar
  49. 49.
    D. Page, J.M. Lattimer, M. Prakash, A.W. Steiner, Astrophys. J. Suppl. 155, 623 (2004)CrossRefGoogle Scholar
  50. 50.
    J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)CrossRefGoogle Scholar
  51. 51.
    K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Astophys. J. 773, 11 (2013)CrossRefGoogle Scholar
  52. 52.
    M. Nauenberg, G. Chapline, Astrophys. J. 179, 277 (1973)CrossRefGoogle Scholar
  53. 53.
    J.M. Lattimer, M. Prakash, D. Masak, A. Yahil, Astrophys. J. 355, 241 (1990)CrossRefGoogle Scholar
  54. 54.
    C. Constantinou, M. Prakash, Phys. Rev. C 95, 055802 (2017)CrossRefGoogle Scholar
  55. 55.
    S.A. Bludman, C. Dover, Phys. Rev. D 22, 1333 (1980)CrossRefGoogle Scholar
  56. 56.
    M. Prakash, T.L. Ainsworth, J.M. Lattimer, Phys. Rev. Lett. 61, 2518 (1988)CrossRefGoogle Scholar
  57. 57.
    M. Prakash et al., Phys. Rep. 280, 1 (1997)CrossRefGoogle Scholar
  58. 58.
    H. Müther, M. Prakash, T.L. Ainsworth, Phys. Lett. B 199, 469 (1987)CrossRefGoogle Scholar
  59. 59.
    L. Engvik, M. Hjorth-Jensen, E. Osnes, G. Bao, E. Ostgaard, Astrophys. J. 469, 794 (1996)CrossRefGoogle Scholar
  60. 60.
    H. Müller, B.D. Serot, Nucl. Phys. A 606, 508 (1996)CrossRefGoogle Scholar
  61. 61.
    J.M. Lattimer, M. Prakash, What a two solar mass neutron star means, in From Nuclei to Neutron Stars, edited by S. Lee (World Scientific, Singapore, 2011) p. 275Google Scholar
  62. 62.
    M. Prakash, J.M. Lattimer, R.F. Sawyer, R.R. Volkas, Annu. Rev. Nucl. Part. Sci. 51, 295 (2001)CrossRefGoogle Scholar
  63. 63.
    A. Burrows, J.M. Lattimer, Astrophys. J. 307, 178 (1986)CrossRefGoogle Scholar
  64. 64.
    W. Keil, H. Janka, Astron. Astrophys. 29, 145 (1995)Google Scholar
  65. 65.
    J.A. Pons, S. Reddy, M. Prakash, J.M. Lattimer, J.A. Miralles, Astrophys. J. 513, 382 (1999)CrossRefGoogle Scholar
  66. 66.
    J.A. Pons, J.A. Miralles, M. Prakash, J.M. Lattimer, Astrophys. J. 553, 382 (2001)CrossRefGoogle Scholar
  67. 67.
    J.A. Pons, A.W. Steiner, M. Prakash, J.M. Lattimer, Phys. Rev. Lett. 86, 5223 (2001)CrossRefGoogle Scholar
  68. 68.
    L.F. Roberts et al., Phys. Rev. Lett. 108, 1103 (2012)CrossRefGoogle Scholar
  69. 69.
    A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351 (2000)CrossRefGoogle Scholar
  70. 70.
    A. Broderick, M. Prakash, J.M. Lattimer, Phys. Lett. B 531, 167 (2002)CrossRefGoogle Scholar
  71. 71.
    J. Schwinger, Particles, Sources and Fields, Vol. 3 (Addison Wesley, Redwood City, 1988)Google Scholar
  72. 72.
    C. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322 (2001)CrossRefGoogle Scholar
  73. 73.
    M. Bocquet, S. Bonozzola, E. Gourgoulhon, J. Novak, Astron. Astrophys. 301, 757 (1995)Google Scholar
  74. 74.
    T.W. Baumgarte, S. Shapiro, M. Shibata, Astrophys. J. 528, L29 (2000)CrossRefGoogle Scholar
  75. 75.
    G.B. Cook, S.L. Shapiro, S.L. Teukolsky, Astrophys. J. 422, 227 (1994)CrossRefGoogle Scholar
  76. 76.
    G. Bozzola, N. Sterigoulas, A. Bauswein, Mon. Not. R. Astron. Soc. 474, 3557 (2018)CrossRefGoogle Scholar
  77. 77.
    J.L. Friedman, N. Stergioulas, Rotating Relativistic Stars (Cambridge University Press, Cambridge, 2013)Google Scholar
  78. 78.
    C. Breu, L. Rezzola, Mon. Not. R. Astron. Soc. 459, 646 (2016)CrossRefGoogle Scholar
  79. 79.
    L.R. Weih, E.R. Most, L. Rezzola, Mon. Not. R. Astron. Soc. 473, L126 (2018)CrossRefGoogle Scholar
  80. 80.
    L. Rezzola, E.R. Most, L.R. Weih, Astrophys. J. Lett. 852, L25 (2018)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. Lalit
    • 1
  • M. A. A. Mamun
    • 1
  • C. Constantinou
    • 1
  • M. Prakash
    • 1
    Email author
  1. 1.Department of Physics and AstronomyOhio UniversityAthensUSA

Personalised recommendations