Advertisement

\(\alpha\) clustering slightly above 100Sn in the light of the new experimental data on the superallowed \(\alpha\) decay

  • Dong BaiEmail author
  • Zhongzhou Ren
Regular Article - Theoretical Physics

Abstract.

The recently observed \(\alpha\)-decay chain 108Xe \( \rightarrow\)104Te \( \rightarrow\)100Sn (K. Auranen et al., Phys. Rev. Lett. 121, 182501 (2018)) could provide valuable information on the \(\alpha\) clustering in even-even nuclei slightly above the major shells \(Z=50\) and \(N=50\). In this work, this \(\alpha\)-decay chain is studied theoretically within the framework of the density-dependent cluster model plus the two-potential approach. We calculate the \(\alpha\)-decay half-lives of 104Te and 108Xe and study in detail their dependence on the Q value and the density-profile parameters of the core nucleus. Various physical properties of 104Te, the heaviest nucleus with a doubly magic self-conjugate core + \(\alpha\), are calculated, with two different assumptions on the renormalization factor of the double-folding potential, which could be a useful reference for future experimental studies.

References

  1. 1.
    A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501 (2001) arXiv:nucl-th/0110014ADSCrossRefGoogle Scholar
  2. 2.
    D. Bai, Z. Ren, Phys. Rev. C 97, 054301 (2018) arXiv:1804.05992 [nucl-th]ADSCrossRefGoogle Scholar
  3. 3.
    R. Katsuragi, Y. Kazama, J. Takahashi, Y. Nakamura, Y. Yamanaka, S. Ohkubo, Phys. Rev. C 98, 044303 (2018) arXiv:1805.12255 [nucl-th]ADSCrossRefGoogle Scholar
  4. 4.
    M. Barbui et al., Phys. Rev. C 98, 044601 (2018) arXiv:1806.08424 [nucl-ex]ADSCrossRefGoogle Scholar
  5. 5.
    D.S. Delion, Lect. Notes Phys. 819, 1 (2010)Google Scholar
  6. 6.
    D.S. Delion, Z. Ren, A. Dumitrescu, D. Ni, J. Phys. G 45, 053001 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Ren, B. Zhou, Front. Phys. (Beijing) 13, 132110 (2018)CrossRefGoogle Scholar
  8. 8.
    C. Qi, R. Liotta, R. Wyss, arXiv:1810.07745 [nucl-th]. Google Scholar
  9. 9.
    D. Bai, Z. Ren, Phys. Lett. B 786, 5 (2018) arXiv:1809.04952 [nucl-th]ADSCrossRefGoogle Scholar
  10. 10.
    D. Seweryniak et al., Phys. Rev. C 73, 061301 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    S.N. Liddick et al., Phys. Rev. Lett. 97, 082501 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    L. Capponi et al., Phys. Rev. C 94, 024314 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    C. Xu, Z. Ren, Phys. Rev. C 74, 037302 (2006) arXiv:nucl-th/0609027ADSCrossRefGoogle Scholar
  14. 14.
    P. Mohr, Eur. Phys. J. A 31, 23 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    R.I. Betan, W. Nazarewicz, Phys. Rev. C 86, 034338 (2012) arXiv:1208.1422 [nucl-th]ADSCrossRefGoogle Scholar
  16. 16.
    M. Patial, R.J. Liotta, R. Wyss, Phys. Rev. C 93, 054326 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    K. Auranen et al., Phys. Rev. Lett. 121, 182501 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    P. Moller, J.R. Nix, K.L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. C 45, 2247 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    V.Y. Denisov, H. Ikezoe, Phys. Rev. C 72, 064613 (2005) arXiv:nucl-th/0510082ADSCrossRefGoogle Scholar
  21. 21.
    D. Ni, Z. Ren, Nucl. Phys. A 828, 348 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. C 51, 559 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    C. Xu, Z. Ren, Nucl. Phys. A 753, 174 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    D. Bai, Z. Ren, Chin. Phys. C 42, 124102 (2018) arXiv:1808.10234 [nucl-th]ADSCrossRefGoogle Scholar
  25. 25.
    G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    C. Xu, Z. Ren, Phys. Rev. C 74, 014304 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    S.A. Gurvitz, G. Kalbermann, Phys. Rev. Lett. 59, 262 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    S.A. Gurvitz, Phys. Rev. A 38, 1747 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    S.A. Gurvitz, P.B. Semmes, W. Nazarewicz, T. Vertse, Phys. Rev. A 69, 042705 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    T. Vertse, K.F. Pal, Z. Balogh, Comput. Phys. Commun. 27, 309 (1982)ADSCrossRefGoogle Scholar
  31. 31.
    B.A. Brown, Phys. Rev. C 46, 811 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    A. Bohr, B.R. Mottlelson, Nuclear Structure, Vol. 1 (World Scientific, Singapore, 1998)Google Scholar
  34. 34.
    K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Academic Press, New York, 1977)Google Scholar
  35. 35.
    S. Ohkubo, Phys. Rev. Lett. 74, 2176 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    D. Ni, Z. Ren, T. Dong, Y. Qian, Phys. Rev. C 87, 024310 (2013)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsNanjing UniversityNanjingChina
  2. 2.School of Physics Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations