Advertisement

Calculation of the ratio \(\Gamma_{n} (E)/ \Gamma_{f} (E)\) in various approaches for the fission width

  • V. Yu. DenisovEmail author
  • I. Yu. Sedykh
Regular Article - Theoretical Physics
  • 25 Downloads

Abstract.

The ratio \(\Gamma_{{\rm n}}(E)/\Gamma_{{\rm f}}(E)\) is calculated using different expressions for the fission width, which take into account and ignore the dependence of the fission barrier on the excitation energy. A strong influence of the energy-dependent fission barrier on the ratio \( \Gamma_{{\rm n}}(E)/\Gamma_{{\rm f}}(E)\) is shown. The dependence of the synthesis of superheavy nuclei on the ratio \( \Gamma_{{\rm n}}(E)/\Gamma_{{\rm f}}(E)\) is discussed. The experimental values of the ratio \( \Gamma_{{\rm f}} (E)/\Gamma_{{\rm n}}(E)\) in 188Os and 210, 212Po are well described using the fission width with a barrier dependent on the excitation energy. The values of the fission barrier height for these nuclei are estimated.

References

  1. 1.
    R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic Press, New York, 1973)Google Scholar
  2. 2.
    A.V. Ignatyuk et al., Sov. J. Part. Nucl. 16, 307 (1985)Google Scholar
  3. 3.
    W. Reisdorf, Z. Phys. A 300, 227 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    W. Reisdorf, M. Schadel, Z. Phys. A 343, 47 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    J.O. Newton, Fiz. Elem. Chastits At. Yadra 21, 821 (1990) Sov. J. Part. Nucl. 21Google Scholar
  6. 6.
    K.-H. Schmidt, W. Morawek, Rep. Prog. Phys. 54, 949 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    A.S. Iljinov et al., Nucl. Phys. A 543, 517 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    A.S. Zubov et al., Phys. At. Nucl. 66, 218 (2003)CrossRefGoogle Scholar
  9. 9.
    A.S. Zubov et al., Phys. Rev. C 68, 014616 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    A.S. Zubov, G.G. Adamian, N.V. Antonenko, Phys. Part. Nucl. 40, 847 (2009)CrossRefGoogle Scholar
  11. 11.
    A.S. Zubov, V.V. Sargsian, G.G. Adamian, N.V. Antonenko, Phys. Rev. C 84, 044320 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    G.G. Adamian, N.V. Antonenko, Phys. Rev. C 81, 019803 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    W.J. Swiatecki, K. Siwek-Wilczynska, J. Wilczynski, Phys. Rev. C 78, 054604 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    W.J. Swiatecki, K. Siwek-Wilczynska, J. Wilczynski, Phys. Rev. C 81, 019804 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    G.G. Adamian, N.V. Antonenko, W. Scheid, Nucl. Phys. A 678, 24 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    V.I. Zagrebaev, Phys. Rev. C 64, 034606 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    W. Loveland, Phys. Rev. C 76, 014612 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Z.Q. Feng et al., Nucl. Phys. A 771, 50 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Z.H. Liu, J.D. Bao, Phys. Rev. C 76, 034604 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    V.I. Zagrebaev, W. Greiner, Nucl. Phys. A 944, 257 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    H. Lu et al., Comput. Phys. Commun. 200, 381 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    V.Yu. Denisov, V.A. Plujko, Problems of Physics of Atomic Nucleus Nuclear Reactions (Publishing Polygraphic Centre ``The University of Kiev'', Kiev, 2013) in RussianGoogle Scholar
  23. 23.
    N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)ADSCrossRefGoogle Scholar
  24. 24.
    H. Eslamizadeh, J. Phys. G 44, 025102 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    V.Yu. Denisov, I.Yu. Sedykh, Phys. Rev. C 98, 024601 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    G.D. Adeev, P.A. Cherdantsev, Yad. Fiz. 18, 741 (1973) Sov. J. Nucl. Phys. 18Google Scholar
  27. 27.
    M. Brack, Ph. Quentin, Phys. Scr. 10A, 163 (1974)ADSCrossRefGoogle Scholar
  28. 28.
    M. Diebel, K. Albrecht, R.W. Hasse, Nucl. Phys. A 355, 66 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    M. Pi, X. Vinas, M. Barranco, Phys. Rev. C 26, 733 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    Z. Lojewski, V.V. Pashkevich, S. Cwiok, Nucl. Phys. A 436, 499 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    M. Brack, C. Guet, H.-B. Hakannson, Phys. Rep. 123, 275 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    V.Yu. Denisov, S. Hofmann, Phys. Rev. C 61, 034606 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    J.A. Sheikh, W. Nazarewicz, J.C. Pei, Phys. Rev. C 80, 011302 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    J.C. Pei et al., Phys. Rev. Lett. 102, 192501 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    J.C. Pei et al., Nucl. Phys. A 834, 381c (2010)ADSCrossRefGoogle Scholar
  36. 36.
    C. Guet, E. Strumberger, M. Brack, Phys. Lett. B 205, 427 (1988)ADSCrossRefGoogle Scholar
  37. 37.
    J.O. Newton, D.G. Popescu, J.R. Leigh, Phys. Rev. C 42, 1772 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    W. Dilg et al., Nucl. Phys. A 217, 269 (1973)ADSCrossRefGoogle Scholar
  39. 39.
    R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Yad. Fiz. 21, 485 (1975) Sov. J. Nucl. Phys. 21Google Scholar
  41. 41.
    V.M. Strutinsky, Sov. J. Nucl. Phys. 3, 449 (1966)Google Scholar
  42. 42.
    V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967)ADSCrossRefGoogle Scholar
  43. 43.
    V.M. Strutinsky, Nucl. Phys. A 122, 1 (1968)ADSCrossRefGoogle Scholar
  44. 44.
    M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972)ADSCrossRefGoogle Scholar
  45. 45.
    K. Mahata, Pramana 85, 281 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)ADSCrossRefGoogle Scholar
  47. 47.
    S. Bjornholm, V.M. Strutinsky, Nucl. Phys. A 136, 1 (1969)ADSCrossRefGoogle Scholar
  48. 48.
    S. Bjornholm, J.E. Lynn, Rev. Mod. Phys. 52, 725 (1980)ADSCrossRefGoogle Scholar
  49. 49.
    H.J. Krappe, K. Pomorski, Theory of Nuclear Fission (Springer-Verlag, Berlin, Heidelberg, 2012)Google Scholar
  50. 50.
    A. Mengoni, Y. Nakajima, J. Nucl. Sci. Technol. 31, 151 (1994)CrossRefGoogle Scholar
  51. 51.
    D.E. Ward et al., Phys. Rev. C 95, 024618 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    F.A. Ivanyuk et al., Phys. Rev. C 97, 054331 (2018)ADSCrossRefGoogle Scholar
  53. 53.
    S. Hofmann, G. Munzenberg, Rev. Mod. Phys. 72, 733 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    S. Hofmann, Lect. Notes Phys. 764, 203 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    S. Hofmann, Russ. Chem. Rev. 78, 1123 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    S. Hofmann, J. Phys. G 42, 114001 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    S. Hofmann et al., Eur. Phys. J. A 52, 180 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    K. Morita et al., J. Phys. Soc. Jpn. 81, 103201 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    Yu.Ts. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007)CrossRefGoogle Scholar
  60. 60.
    Yu.Ts. Oganessian, V.K. Utyonkov, Nucl. Phys. A 944, 62 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    Yu.Ts. Oganessian, A. Sobiczewski, G.M. Ter-Akopian, Phys. Scr. 92, 023003 (2017)ADSCrossRefGoogle Scholar
  62. 62.
    A. Sierk, Phys. Rev. C 33, 2039 (1986)ADSCrossRefGoogle Scholar
  63. 63.
    M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    P. Moller, A.J. Sierk, T. Ichikawa, A. Iwamoto, M. Mumpower, Phys. Rev. C 91, 024310 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    Z. Patyk, A. Sobiczewski, Nucl. Phys. A 533, 132 (1991)ADSCrossRefGoogle Scholar
  66. 66.
    P. Moller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109–110, 1 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    G.N. Smirenkin, IAEA-Report INDC(CCP)-359 (1993) see also in https://doi.org/www-nds.iaea.org/RIPL-3/

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Nuclear ResearchKievUkraine
  2. 2.Faculty of PhysicsTaras Shevchenko National University of KievKievUkraine
  3. 3.Ukrainian State University of Chemical TechnologyDnepr (Dnepropetrovsk)Ukraine
  4. 4.Financial UniversityMoscowRussia

Personalised recommendations