Advertisement

Polarization amplitudes in \(\tau^{-} \rightarrow \nu_{\tau} VP\) decay beyond the Standard Model

  • L. R. DaiEmail author
  • E. Oset
Regular Article - Theoretical Physics
  • 12 Downloads

Abstract.

We study the amplitudes of the \(\tau^{-} \rightarrow \nu_{\tau} VP\) decay for the different polarizations of the vector meson V, using a formalism where the mapping from the quark degrees of freedom to the meson ones is done with the 3P0 model. We extend the formalism to a case, with the operator \(\gamma^{\mu} -\alpha\gamma^{\mu} \gamma_{5}\), that can account for different models beyond the Standard Model and study in detail the \(\tau^{-} \rightarrow \nu_{\tau} K^{\ast 0} K^{-}\) reaction for the different polarizations of the \(K^{\ast 0}\). The results are shown in terms of the \(\alpha\) parameter that differs for each model. We find that \(\frac{\mathrm{d} \Gamma}{\mathrm{d} M_{inv}^{(K^{\ast 0} K^{-})}}\) is very different for each of the third components of the vector spin, \( M=\pm 1, 0\), and in particular the magnitude \(\frac{\mathrm{d} \Gamma}{\mathrm{d} M_{inv}^{(K^{\ast 0} K^{-})}}\vert _{M=+1} -\)\(\frac{\mathrm{d} \Gamma}{\mathrm{d} M_{inv}^{(K^{\ast 0} K^{-})}}\vert _{M=-1}\) is very sensitive to the \(\alpha\) parameter, which makes the investigation of this magnitude very useful to test different models beyond the Standard Model.

References

  1. 1.
    N. Isgur, C. Morningstar, C. Reader, Phys. Rev. D 39, 1357 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    H. Kühn, F. Wagner, Nucl. Phys. B 236, 16 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    B.C. Barish, R. Stroynowski, Phys. Rep. 157, 1 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    M. Davier, A. Hócker, Z.Q. Zhang, Rev. Mod. Phys. 78, 1043 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    M. Antonelli, D.M. Asner, D. Bauer et al., Phys. Rep. 494, 197 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    B.A. Li, Phys. Rev. D 52, 5165 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    B.A. Li, Phys. Rev. D 52, 5184 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    B.A. Li, Phys. Rev. D 55, 1436 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    ALEPH Collaboration (D. Buskulic et al.), Z. Phys. C 74, 263 (1997)CrossRefGoogle Scholar
  10. 10.
    ALEPH Collaboration, Z. Phys. C 70, 579 (1996)CrossRefGoogle Scholar
  11. 11.
    ALEPH Collaboration (R. Barate et al.), Eur. Phys. J. C 1, 65 (1998)ADSGoogle Scholar
  12. 12.
    Belle Collaboration (K. Inami et al.), Phys. Lett. B 672, 209 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    CLEO Collaboration (K. Arms et al.), Phys. Rev. Lett. 94, 241802 (2005)CrossRefGoogle Scholar
  14. 14.
    ALEPH Collaboration (R. Barate et al.), Eur. Phys. J. C 10, 1 (1999)ADSGoogle Scholar
  15. 15.
    The BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 100, 011801 (2008)CrossRefGoogle Scholar
  16. 16.
    M.K. Volkov, K. Nurlan, A.A. Pivovarov, JETP Lett. 106, 771 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    G. Lopez Castro, D.A. Lopez Falcon, Phys. Rev. D 54, 4400 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    M.K. Volkov, A.B. Arbuzov, D.G. Kostunin, Phys. Rev. D 86, 057301 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    L.R. Dai, R. Pavao, S. Sakai, E. Oset, arXiv:1805.04573 [hep-ph]Google Scholar
  20. 20.
    L. Micu, Nucl. Phys. B 10, 521 (1969)ADSCrossRefGoogle Scholar
  21. 21.
    A. Le Yaouanc, L. Oliver, Pène, J.C. Raynal, Phys. Rev. D 8, 2223 (1973)ADSCrossRefGoogle Scholar
  22. 22.
    F.E. Close, An Introduction to Quark and Partons (Academic Press, 1979)Google Scholar
  23. 23.
    W.H. Liang, E. Oset, Eur. Phys. J. C 78, 528 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    X.G. He, G. Valencia, Phys. Lett. B 779, 52 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente, J. Virto, Phys. Lett. B 760, 214 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    C.H. Chen, T. Nomura, H. Okada, Phys. Lett. B 774, 456 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    A. Crivellin, D. Müller, T. Ota, JHEP 09, 040 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D.A. Faroughy, O. Sumensari, arXiv:1806.05689Google Scholar
  29. 29.
    M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, Phys. Lett. B 779, 317 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    N. Assad, B. Fornal, B. Grinstein, Phys. Lett. B 777, 324 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    M. Blanke, A. Crivellin, Phys. Rev. Lett. 121, 011801 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    X.G. He, G. Valencia, Phys. Lett. B 779, 52 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)Google Scholar
  34. 34.
    K. Hagiwara, A.D. Martin, M.F. Wade, Phys. Lett. B 228, 144 (1989)ADSCrossRefGoogle Scholar
  35. 35.
    R. Alonso, A. Kobach, J.M. Camalich, Phys. Rev. D 94, 094021 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    L.R. Dai, E. Oset, arXiv:1808.02876 [hep-ph]Google Scholar
  37. 37.
    C. Itzykson, J.B. Zuber, Quantum Field Theory (McGraw-Hill, 1980)Google Scholar
  38. 38.
    F. Mandl, G. Shaw, Quantum Field Theory (John Wiley & Sons, 1984)Google Scholar
  39. 39.
    X.G. He, G. Valencia, Phys. Rev. D 87, 014014 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    ALEPH Collaboration (S. Schael et al.), Phys. Rep. 421, 191 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    M. Wagner, S. Leupold, Phys. Rev. D 78, 053001 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 730, 392 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    L. Roca, E. Oset, J. Singh, Phys. Rev. D 72, 014002 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Y. Zhou, X.L. Ren, H.X. Chen, L.S. Geng, Phys. Rev. D 90, 014020 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    I. Caprini, L. Lellouch, M. Neubert, Nucl. Phys. B 530, 153 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    S. Fajfer, J.F. Kamenik, I. Nisandzic, Phys. Rev. D 85, 094025 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    Q. Luo, D.R. Xu, in Proceedings of the 9th International Particle Accelerator Conference (JACoW, 2018)  https://doi.org/10.18429/JACoW-IPAC2018-MOPML013
  48. 48.
    S. Eidelman, Nucl. Part. Phys. Proc. 260, 238 (2015)CrossRefGoogle Scholar
  49. 49.
  50. 50.
    Belle II Collaboration (E. Kou), arXiv:1808.10567 [hep-ex]Google Scholar
  51. 51.
    Belle Collaboration (K. Adamczyk), PoS CKM2016, 052 (2017)Google Scholar
  52. 52.
    A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, D. London, JHEP 11, 121 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    K. Hagiwara, A.D. Martin, M.F. Wade, Phys. Lett. B 228, 144 (1989)ADSCrossRefGoogle Scholar
  54. 54.
    X.G. He, G. Valencia, Phys. Rev. D 66, 013004 (2002) 66ADSCrossRefGoogle Scholar
  55. 55.
    U. Baur, T. Plehn, D.L. Rainwater, Phys. Rev. D 68, 033001 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    X.G. He, G. Valencia, Phys. Rev. D 87, 014014 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    A.K. Alok, D. Kumar, J. Kumar, S. Kumbhakar, S.U. Sankar, JHEP 09, 152 (2018)ADSCrossRefGoogle Scholar
  58. 58.
    S. Bhattacharya, S. Nandi, S. Kumar Patra, arXiv:1805.08222 [hep-ph]Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsLiaoning Normal UniversityDalianChina
  2. 2.Departamento de Física Teórica and IFICCentro Mixto Universidad de Valencia-CSIC, Institutos de Investigacíon de PaternaValenciaSpain

Personalised recommendations