Advertisement

Shape stability of pasta phases: Lasagna case

  • Sebastian KubisEmail author
  • Włodzimierz Wójcik
Open Access
Regular Article - Theoretical Physics

Abstract.

The stability of periodically placed slabs occurring in neutron stars (lasagna phase) is examined by exact geometrical methods for the first time. It appears that the slabs are stable against any shape perturbation modes for the whole range of volume fraction occupied by the slab. The calculations are done in the framework of the liquid drop model and obtained results are universal --they do not depend on model parameters like surface tension or charge density. The results shows that the transition to other pasta shapes requires crossing the finite energy barrier.

References

  1. 1.
    D.G. Ravenhall, C.J. Pethick, J.R. Wilson, Phys. Rev. Lett. 50, 2066 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    G. Baym, H.A. Bethe, C. Pethick, Nucl. Phys. A 175, 225 (1971)ADSCrossRefGoogle Scholar
  3. 3.
    M. Hashimoto, H. Seki, M. Yamada, Prog. Theor. Phys. 71, 320 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    K. Oyamatsu, Nucl. Phys. A 561, 431 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    K. Iida, G. Watanabe, K. Sato, Prog. Theor. Phys. 106, 551 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    R.D. Williams, S.E. Koonin, Nucl. Phys. A 435, 844 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    K. Nakazato, K. Oyamatsu, S. Yamada, Phys. Rev. Lett. 103, 132501 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    K. Nakazato, K. Iida, K. Oyamatsu, Phys. Rev. C 83, 065811 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    S. Kubis, W. Wójcik, Phys. Rev. C 94, 065805 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    G. Watanabe, T. Maruyama, K. Sato, K. Yasuoka, T. Ebisuzaki, Phys. Rev. Lett. 94, 031101 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A.S. Schneider, C.J. Horowitz, J. Hughto, D.K. Berry, Phys. Rev. C 88, 065807 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A.S. Schneider, D.K. Berry, C.M. Briggs, M.E. Caplan, C.J. Horowitz, Phys. Rev. C 90, 055805 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    D.K. Berry, M.E. Caplan, C.J. Horowitz, G. Huber, A.S. Schneider, Phys. Rev. C 94, 055801 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    P.N. Alcain, P.A. Giménez Molinelli, C.O. Dorso, Phys. Rev. C 90, 065803 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    B. Schuetrumpf, M.A. Klatt, K. Iida, J. Maruhn, K. Mecke, P.G. Reinhard, Phys. Rev. C 87, 055805 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    B. Schuetrumpf et al., Phys. Rev. C 91, 025801 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    B. Schuetrumpf, W. Nazarewicz, Phys. Rev. C 92, 045806 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    R.A. Kycia, S. Kubis, W. Wójcik, Phys. Rev. C 96, 025803 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    L. Di Gallo, M. Oertel, M. Urban, Phys. Rev. C 84, 045801 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M. Urban, M. Oertel, Int. J. Mod. Phys. E 24, 1541006 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    D.N. Kobyakov, C.J. Pethick, Zh. Eksp. Teor. Fiz. 154, 972 (2018)Google Scholar
  22. 22.
    D. Durel, M. Urban, Phys. Rev. C 97, 065805 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    C.J. Pethick, A.Y. Potekhin, Phys. Lett. B 427, 7 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    S.L. Marshall, J. Phys.: Cond. Matter 12, 4575 (2000)ADSGoogle Scholar
  25. 25.
    S. Tyagi, Phys. Rev. E 70, 066703 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1994)Google Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of PhysicsCracow University of TechnologyKrakówPoland

Personalised recommendations