Advertisement

Towards the lowest-energy limit for light ions identification with silicon pixel-type detectors

  • N. Cieplicka-Oryńczak
  • D. Mengoni
  • M. Ciemała
  • S. Leoni
  • B. Fornal
  • J. A. Dueñas
  • S. Brambilla
  • C. Boiano
  • P. R. John
  • D. Bazzacco
  • G. Benzoni
  • G. Bocchi
  • S. Capra
  • F. C. L. Crespi
  • A. Goasduff
  • K. Hadyńska-Klęk
  • Ł. W. Iskra
  • G. Jaworski
  • F. Recchia
  • M. Siciliano
  • D. Testov
  • J. J. Valiente-Dobón
Open Access
Special Article - New Tools and Techniques
  • 93 Downloads

Abstract.

An in-beam test of two pixel-type silicon detectors of the TRACE detector project has been performed at Laboratori Nazionali di Legnaro (Italy). The aim was to investigate the lowest kinetic energy values at which isotopic identification of heavy-ion reactions products with mass \( A\sim 10\) is possible, by using a single-layer silicon detector. Two separate read-out chains, analog and digital, were used, and the Pulse Shape Analysis technique was employed to obtain the particle identification matrices for the digitally processed data. The results confirmed the high capability of the Pulse Shape Analysis method which can be used for light ion identification, with performances similar to the analog approach. Separation in both charge and mass was obtained for Li and Be isotopes, however, the presence of a significant background from alpha particles severely limited the data analysis in the lower energy region. Due to this effect, the identification of the light products (7, 6Li isotopes) could be possible down to \( \sim 24.5\) MeV only, while the 9, 7Be isotopes were separable down to \( \sim 29\) MeV. This gives the value of \( < 4\) MeV/nucleon as the lowest kinetic energy for light products identification by using the pixel-type detectors of the TRACE project, in the present experimental conditions.

References

  1. 1.
    S. Barlini et al., Nucl. Instrum. Methods Phys. Res. A 600, 644 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    L. Bardelli et al., Nucl. Instrum. Methods Phys. Res. A 654, 272 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    S. Carboni et al., Nucl. Instrum. Methods Phys. Res. A 664, 251 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    N. LeNeindre et al., Nucl. Instrum. Methods Phys. Res. A 701, 145 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    M. Assié et al., Eur. Phys. J. A 51, 11 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    J. Dueñas et al., Nucl. Instrum. Methods Phys. Res. A 676, 70 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    D. Mengoni et al., Nucl. Instrum. Methods Phys. Res. A 764, 241 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    D. Mengoni, PhD Thesis, Università di Camerino (2006)Google Scholar
  9. 9.
    H.G. Bohlen et al., Nucl. Phys. A 734, 345 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    W. von Oertzen et al., Eur. Phys. J. A 21, 193 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    W. von Oertzen, M. Freer, Y. Kanada-En’yo, Phys. Rep. 432, 43 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    H.G. Bohlen et al., Eur. Phys. J. A 31, 279 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    H.G. Bohlen et al., Nucl. Phys. A 722, 3c (2003)ADSCrossRefGoogle Scholar
  14. 14.
    E. Strano et al., Nucl. Instrum. Methods B 317, 657 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A. Pullia, D. Barrientos, D. Bazzacco, M. Bellato, D. Bortolato, R. Isocrate, in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (IEEE, 2012) p. 819Google Scholar
  16. 16.
    C. Boiano, A. Guglielmetti, S. Riboldi, IEEE (NSS/MIC) Conference Record N14-34 (2012)Google Scholar
  17. 17.
    ROOT -- An Object Oriented Data Analysis Framework, https://doi.org/root.cern.ch/
  18. 18.
    ROOT -- An Object Oriented Data Analysis Framework, https://doi.org/root.cern.ch/root/html/TSpline3.html
  19. 19.
    J.A. Dueñas et al., Nucl. Instrum. Methods Phys. Res. A 714, 48 (2013)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • N. Cieplicka-Oryńczak
    • 1
    • 2
  • D. Mengoni
    • 3
    • 4
  • M. Ciemała
    • 1
  • S. Leoni
    • 2
    • 5
  • B. Fornal
    • 1
  • J. A. Dueñas
    • 6
  • S. Brambilla
    • 2
    • 5
  • C. Boiano
    • 2
    • 5
  • P. R. John
    • 3
    • 4
    • 7
  • D. Bazzacco
    • 3
  • G. Benzoni
    • 2
  • G. Bocchi
    • 2
    • 5
  • S. Capra
    • 2
    • 5
  • F. C. L. Crespi
    • 2
    • 5
  • A. Goasduff
    • 8
  • K. Hadyńska-Klęk
    • 8
  • Ł. W. Iskra
    • 1
  • G. Jaworski
    • 8
  • F. Recchia
    • 3
    • 4
  • M. Siciliano
    • 4
    • 8
  • D. Testov
    • 3
    • 4
  • J. J. Valiente-Dobón
    • 8
  1. 1.Institute of Nuclear Physics Polish Academy of SciencesKrakowPoland
  2. 2.Istituto Nazionale di Fisica Nucleare Sezione di MilanoMilanoItaly
  3. 3.Istituto Nazionale di Fisica Nucleare Sezione di PadovaPadovaItaly
  4. 4.Dipartimento di Fisica dell’Università degli Studi di PadovaPadovaItaly
  5. 5.Università degli Studi di MilanoMilanoItaly
  6. 6.Departmento de Ingeniería Eléctrica y Centro de Estudios Avanzados en Física, Matemáticas y ComputaciónUniversidad de HuelvaHuelvaSpain
  7. 7.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  8. 8.Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di LegnaroLegnaroItaly

Personalised recommendations