Advertisement

Constraining the shell correction energies of super-heavy nuclei

Uncertainty analysis
  • Bartholomé Cauchois
  • David Boilley
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract.

The existence of super-heavy nuclei can only be explained by the introduction of stabilizing ground state shell effects. The macroscopic-microscopic masses are constructed from the sum of a macroscopic, liquid-drop, energy contribution and a microscopic, shell correction energy. In the present study, shell correction energies are inferred by subtracting the liquid-drop contributions to their corresponding experimental masses. As most super-heavy nuclei masses are not precisely known, they are deduced from measured \( Q_{\alpha}\) values. Furthermore, a detailed uncertainty analysis regarding experimental masses and more importantly the liquid-drop masses delivers decisive theoretical constraints on shell correction energies. The current work focuses on two \( \alpha\) decay chains, the first following from a hot fusion reaction leading to the synthesis of 291Lv , and the second following from a cold fusion reaction leading to the synthesis of 277Cn . Contrasting the outcomes obtained for these two decay chains demonstrates that mass measurement precisions of about 50keV are required in order to efficiently constrain the shell correction energies of super-heavy nuclei.

References

  1. 1.
    S. Hofmann et al., Eur. Phys. J. A 52, 116 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    A. Baran, M. Kowal, P.-G. Reinhard, L.M. Robledo, A. Staszczak, M. Warda, Nucl. Phys. A 944, 442 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    H. Lü, D. Boilley, Y. Abe, C. Shen, Phys. Rev. C 94, 034616 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    V.M. Strutinsky, Nucl. Phys. A 122, 1 (1968)ADSCrossRefGoogle Scholar
  6. 6.
    B. Cauchois, PhD Thesis, Université de Caen Normandie Université (2018)Google Scholar
  7. 7.
    B. Cauchois, H. Lü, D. Boilley, G. Royer, Phys. Rev. C 98, 024305 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    BIPM, IEC, IFCC, ILAC, ISO, IUPAC, GUM 1995 with minor corrections. Evaluation of measurement data - Guide to the expression of uncertainty in measurement (2008)Google Scholar
  9. 9.
    L. Kirkup, B. Frenkel, An Introduction to Uncertainty in Measurements: Using the GUM (Cambridge University Press, New-York, 2006)Google Scholar
  10. 10.
    W.J. Huang, G. Audi, M. Wang, F.G. Kondev, S. Naimi, X. Xu, Chin. Phys. C 41, 030002 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Yu.Ts. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Morita, J. Phys. Soc. Jpn. 73, 043201 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    G. Royer, A. Subercaze, Nucl. Phys. A 917, 1 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    W.D. Myers, W.J. Swiatecki, Nucl. Phys. A 601, 141 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    W.D. Myers, W.J. Swiatecki, LBL report 36803 (1994)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DRF - CNRS/IN2P3Caen CedexFrance
  2. 2.Normandie Université, UnicaenCaenFrance

Personalised recommendations