Advertisement

The \(\eta^{\prime}\)-carbon potential at low meson momenta

  • The CBELSA/TAPS Collaboration
  • M. Nanova
  • S. Friedrich
  • V. Metag
  • E. Ya. Paryev
  • F. N. Afzal
  • D. Bayadilov
  • B. Bantes
  • R. Beck
  • M. Becker
  • S. Böse
  • K. -T. Brinkmann
  • V. Crede
  • P. Drexler
  • H. Eberhardt
  • D. Elsner
  • F. Frommberger
  • Ch. Funke
  • M. Gottschall
  • M. Grüner
  • E. Gutz
  • Ch. Hammann
  • J. Hannappel
  • J. Hartmann
  • W. Hillert
  • Ph. Hoffmeister
  • Ch. Honisch
  • T. Jude
  • D. Kaiser
  • F. Kalischewski
  • I. Keshelashvili
  • F. Klein
  • K. Koop
  • B. Krusche
  • M. Lang
  • K. Makonyi
  • F. Messi
  • J. Müller
  • J. Müllers
  • D. Piontek
  • T. Rostomyan
  • D. Schaab
  • Ch. Schmidt
  • H. Schmieden
  • R. Schmitz
  • T. Seifen
  • V. Sokhoyan
  • C. Sowa
  • K. Spieker
  • A. Thiel
  • U. Thoma
  • T. Triffterer
  • M. Urban
  • H. van Pee
  • D. Walther
  • Ch. Wendel
  • D. Werthmüller
  • U. Wiedner
  • A. Wilson
  • L. Witthauer
  • Y. Wunderlich
  • H. -G. Zaunick
Regular Article - Experimental Physics

Abstract.

The production of \(\eta^{\prime}\) mesons in coincidence with forward-going protons has been studied in photon-induced reactions on 12C and on a liquid hydrogen (LH2) target for incoming photon energies of 1.3-2.6 GeV at the electron accelerator ELSA. The \(\eta^{\prime}\) mesons have been identified via the \(\eta^{\prime} \rightarrow \pi^{0} \pi^{0}\eta \rightarrow 6 \gamma\) decay registered with the CBELSA/TAPS detector system. Coincident protons have been identified in the MiniTAPS BaF2 array at polar angles of \(2^{\circ} \le \theta_{p} \le 11^{\circ}\). Under these kinematic constraints the \(\eta^{\prime}\) mesons are produced with relatively low kinetic energy (\(\approx 150\) MeV) since the coincident protons take over most of the momentum of the incident-photon beam. For the C-target this allows the determination of the real part of the \(\eta^{\prime}\)-carbon potential at low meson momenta by comparing with collision model calculations of the \(\eta^{\prime}\) kinetic energy distribution and excitation function. Fitting the latter data for \(\eta^{\prime}\) mesons going backwards in the center-of-mass system yields a potential depth of \(V = -(44 \pm 16(stat) \pm 15(syst))\) MeV, consistent with earlier determinations of the potential depth in inclusive measurements for average \(\eta^{\prime}\) momenta of \(\approx 1.1\) GeV/c. Within the experimental uncertainties, there is no indication of a momentum dependence of the \(\eta^{\prime}\)-carbon potential. The LH2 data, taken as a reference to check the data analysis and the model calculations, provide differential and integral cross sections in good agreement with previous results for \(\eta^{\prime}\) photoproduction off the free proton.

References

  1. 1.
    R. Hayano, T. Hatsuda, Rev. Mod. Phys. 82, 2949 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    S. Leupold, V. Metag, U. Mosel, Int. J. Mod. Phys. 19, 147 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    E. Oset et al., Int. J. Mod. Phys. E 21, 1230011 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    H. Nagahiro, S. Hirenzaki, Phys. Rev. Lett. 94, 232503 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    H. Gilg et al., Phys. Rev. C 62, 025201 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    K. Itahashi et al., Phys. Rev. C 62, 025202 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    H. Geissel et al., Phys. Rev. Lett. 88, 122301 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    K. Suzuki et al., Phys. Rev. Lett. 92, 072302 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    P. Kienle, T. Yamazaki, Prog. Part. Nucl. Phys. 52, 85 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    E. Friedman, A. Gal, Phys. Rep. 452, 89 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    H. Nagahiro, M. Takizawa, S. Hirenzaki, Phys. Rev. C 74, 045203 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    V. Metag, M. Nanova, E.Ya. Paryev, Prog. Part. Nucl. Phys. 97, 199 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    CBELSA/TAPS Collaboration (M. Nanova et al.), Phys. Lett. B 727, 417 (2013)CrossRefGoogle Scholar
  14. 14.
    CBELSA/TAPS Collaboration (M. Nanova et al.), Phys. Rev. C 94, 025205 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    CBELSA/TAPS Collaboration (M. Nanova et al.), Phys. Lett. B 710, 600 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    V. Metag, Hyperfine Interact. 234, 25 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    M. Nanova, V. Metag, EPJ Web of Conferences 130, 02007 (2016)CrossRefGoogle Scholar
  18. 18.
    CBELSA/TAPS Collaboration (S. Friedrich et al.), Eur. Phys. J. A 52, 297 (2016)CrossRefGoogle Scholar
  19. 19.
    E.Ya. Paryev, J. Phys. G: Nucl. Part. Phys. 40, 025201 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    E. Hernandez, E. Oset, Z. Phys. A 341, 201 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    D. Cabrera et al., Nucl. Phys. A 733, 130 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    O. Buss et al., Phys. Rep. 512, 1 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J. Weil, U. Mosel, V. Metag, Phys. Lett. B 723, 120 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    E.Ya. Paryev, J. Phys. G: Nucl. Part. Phys. 43, 015106 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    CBELSA/TAPS Collaboration (S. Friedrich et al.), Phys. Lett. B 736, 26 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    D. Husmann, W.J. Schwille, Phys. Bl. 44, 40 (1988)CrossRefGoogle Scholar
  27. 27.
    W. Hillert, Eur. Phys. J. A 28, 139 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    The Crystal Barrel Collaboration (E. Aker et al.), Nucl. Instrum. Methods A 321, 69 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    G. Suft et al., Nucl. Instrum. Methods A 538, 416 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    CBELSA/TAPS Collaboration (A. Thiel et al.), Eur. Phys. J. A 53, 8 (2017)CrossRefGoogle Scholar
  33. 33.
    Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
  34. 34.
    F. Afzal, JPS Conf. Proc. 10, 032006 (2016)Google Scholar
  35. 35.
    CBELSA/TAPS Collaboration (V. Crede et al.), Phys. Rev. C 80, 055202 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    CBELSA/TAPS Collaboration (I. Jaegle et al.), Eur. Phys. J. A 47, 11 (2011)CrossRefGoogle Scholar
  37. 37.
    C. Ciofi degli Atti, S. Simula, Phys. Rev. C 53, 1689 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    R. Brun, GEANT, Cern/DD/ee/84-1 (1986)Google Scholar
  39. 39.
    T. Falter, S. Leupold, U. Mosel, Phys. Rev. C 64, 024608 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    N. Bianchi et al., Phys. Rev. C 54, 1688 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    V. Muccifora et al., Phys. Rev. C 60, 064616 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    V.L. Kashevarov et al., Phys. Rev. Lett. 118, 212001 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    S.V. Efremov, E.Ya. Paryev, Eur. Phys. J. A 1, 99 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    Z. Rudy et al., Eur. Phys. J. A 15, 303 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Tanaka et al., Phys. Rev. Lett. 117, 202501 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    H. Nagahiro et al., Phys. Rev. C 87, 045201 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    N. Muramatsu, Few-Body Syst. 54, 997 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    V. Metag, approved proposal ELSA/03-2012-BGO-ODGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • The CBELSA/TAPS Collaboration
  • M. Nanova
    • 1
  • S. Friedrich
    • 1
  • V. Metag
    • 1
  • E. Ya. Paryev
    • 2
  • F. N. Afzal
    • 3
  • D. Bayadilov
    • 3
    • 4
  • B. Bantes
    • 5
  • R. Beck
    • 3
  • M. Becker
    • 3
  • S. Böse
    • 3
  • K. -T. Brinkmann
    • 1
  • V. Crede
    • 6
  • P. Drexler
    • 1
  • H. Eberhardt
    • 5
  • D. Elsner
    • 5
  • F. Frommberger
    • 5
  • Ch. Funke
    • 3
  • M. Gottschall
    • 3
  • M. Grüner
    • 3
  • E. Gutz
    • 1
  • Ch. Hammann
    • 3
  • J. Hannappel
    • 5
  • J. Hartmann
    • 3
  • W. Hillert
    • 5
  • Ph. Hoffmeister
    • 3
  • Ch. Honisch
    • 3
  • T. Jude
    • 5
  • D. Kaiser
    • 3
  • F. Kalischewski
    • 3
  • I. Keshelashvili
    • 7
  • F. Klein
    • 5
  • K. Koop
    • 3
  • B. Krusche
    • 7
  • M. Lang
    • 3
  • K. Makonyi
    • 1
  • F. Messi
    • 5
  • J. Müller
    • 3
  • J. Müllers
    • 3
  • D. Piontek
    • 3
  • T. Rostomyan
    • 7
  • D. Schaab
    • 3
  • Ch. Schmidt
    • 3
  • H. Schmieden
    • 5
  • R. Schmitz
    • 3
  • T. Seifen
    • 3
  • V. Sokhoyan
    • 3
  • C. Sowa
    • 8
  • K. Spieker
    • 3
  • A. Thiel
    • 3
  • U. Thoma
    • 3
  • T. Triffterer
    • 8
  • M. Urban
    • 3
  • H. van Pee
    • 3
  • D. Walther
    • 3
  • Ch. Wendel
    • 3
  • D. Werthmüller
    • 7
  • U. Wiedner
    • 8
  • A. Wilson
    • 3
  • L. Witthauer
    • 7
  • Y. Wunderlich
    • 3
  • H. -G. Zaunick
    • 1
  1. 1.II. Physikalisches InstitutUniversität GießenGießenGermany
  2. 2.Institute of Nuclear ResearchRussian Academy of SciencesMoscowRussia
  3. 3.Helmholtz-Institut für Strahlen- und KernphysikUniversität BonnBonnGermany
  4. 4.Petersburg Nuclear Physics InstituteGatchinaRussia
  5. 5.Physikalisches InstitutUniversität BonnBonnGermany
  6. 6.Department of PhysicsFlorida State UniversityTallahasseeUSA
  7. 7.Departement PhysikUniversität BaselBaselSwitzerland
  8. 8.Physikalisches InstitutUniversität BochumBochumGermany

Personalised recommendations