Advertisement

Experimental determination of reference pulses for highly segmented HPGe detectors and application to Pulse Shape Analysis used in \(\gamma\)-ray tracking arrays

  • H. J. Li
  • J. LjungvallEmail author
  • C. Michelagnoli
  • E. Clément
  • J. Dudouet
  • P. Désesquelles
  • A. Lopez-Martens
  • G. de France
Regular Article - Experimental Physics
  • 65 Downloads

Abstract.

For the first time, bases of signals delivered by highly segmented HPGe detectors, for identified hit locations, have been determined in situ, that is in the actual accelerator-target-detection system conditions corresponding to data acquisition during a physics experiment. As a consequence, these bases include all the genuine features and alterations of the signals induced by the experimental setup, e.g. diaphony, electronic response, specificity of individual crystals. The present pulse shape bases were constructed using calibration source data taken at the beginning of the AGATA campaign at GANIL. An experiment performed at GANIL using the AGATA \(\gamma\)-ray detector together with the VAMOS spectrometer was used to validate the bases. The performance of the bases when used for pulse-shape analysis has been compared to the performance of the standard bases, composed of pulse shapes generated by a computer simulation used for AGATA. This is done by comparing the Doppler correction capability. The so-called Jacobian method used to generate the in situ bases also produces correlations that can be applied to locate in a direct way (no search algorithm) the location where a \(\gamma\)-ray interacted given that only one segment is hit. As about 50% of all pulse-shape analysis is performed on crystals with only one segment hit this will allow for a large reduction in the needed computer power. Different ways to improve the results of this prospective work are discussed.

References

  1. 1.
    S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    I. Lee et al., Nucl. Phys. A 746, 255 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    A. Gadea et al., Nucl. Instrum. Methods Phys. Res. A 654, 88 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    N. Pietralla et al., EPJ Web of Conferences 66, 02083 (2014)CrossRefGoogle Scholar
  5. 5.
    E. Clément et al., Nucl. Instrum. Methods Phys. Res. A 855, 1 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    A. Gadea et al., Eur. Phys. J. A 20, 193 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    J. Simpson et al., Acta Phys. Hung. 11, 159 (2000)Google Scholar
  8. 8.
    H. Wollersheim et al., Nucl. Instrum. Methods Phys. Res. A 537, 637 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    R. Venturelli, D. Bazzacco, LNL Annual Report (2004) p. 220Google Scholar
  10. 10.
    B. Bruyneel, B. Birkenbach, P. Reiter, Eur. Phys. J. A 52, 70 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    B. Bruyneel, P. Reiter, G. Pascovici, Nucl. Instrum. Methods Phys. Res. A 569, 764 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    B. Bruyneel, B. Birkenbach, P. Reiter, Nucl. Instrum. Methods Phys. Res. A 641, 92 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    B. Birkenbach et al., Nucl. Instrum. Methods Phys. Res. A 640, 176 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    B. Bruyneel et al., Nucl. Instrum. Methods Phys. Res. A 599, 196 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    A. Wiens et al., Eur. Phys. J. A 49, 47 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    F. Recchia et al., Nucl. Instrum. Methods Phys. Res. A 604, 555 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    P.-A. Söderström et al., Nucl. Instrum. Methods Phys. Res. A 638, 96 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    T. Steinbach et al., Eur. Phys. J. A 53, 23 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    G. Schmid et al., Nucl. Instrum. Methods Phys. Res. A 430, 69 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    F. Recchia et al., Nucl. Instrum. Methods Phys. Res. A 604, 60 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    C. Michelagnoli, in preparationGoogle Scholar
  22. 22.
    A. Boston et al., Nucl. Instrum. Methods Phys. Res. B 261, 1098 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    L. Nelson et al., Nucl. Instrum. Methods Phys. Res. A 573, 153 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    T. Ha et al., Nucl. Instrum. Methods Phys. Res. A 697, 123 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    S. Martín, B. Quintana, D. Barrientos, Nucl. Instrum. Methods Phys. Res. A 823, 32 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    F. Crespi et al., Nucl. Instrum. Methods Phys. Res. A 593, 440 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    C. Domingo-Pardo et al., Nucl. Instrum. Methods Phys. Res. A 643, 79 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    N. Goel et al., Nucl. Instrum. Methods Phys. Res. A 652, 591 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    M. Ginsz, Characterization of high-purity, multi-segmented germanium detectors, PhD Thesis, Université de Strasbourg, Ecole doctorale de physique et chimie physique, Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS/IN2P3 (2015)Google Scholar
  30. 30.
    P. Désesquelles et al., Phys. Rev. C 62, 024614 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    P. Désesquelles, Nucl. Instrum. Methods Phys. Res. A 654, 324 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    P. Désesquelles et al., Nucl. Instrum. Methods Phys. Res. A 729, 198 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Second AGATA-GRETINA tracking arrays collaboration meeting, private communication (2018)Google Scholar
  34. 34.
    E. Farnea et al., Nucl. Instrum. Methods Phys. Res. A 621, 331 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    N. Lalović et al., Nucl. Instrum. Methods Phys. Res. A 806, 258 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    S. Pullanhiotan, M. Rejmund, A. Navin, W. Mittig, S. Bhattacharyya, Nucl. Instrum. Methods Phys. Res. A 593, 343 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    M. Vandebrouck et al., Nucl. Instrum. Methods Phys. Res. A 812, 112 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    M. Rejmund et al., Nucl. Instrum. Methods Phys. Res. A 646, 184 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    J. Dudouet et al., Phys. Rev. Lett. 118, 162501 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    B. Singh, Z. Hu, Nucl. Data Sheets 98, 335 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    L. Bettermann et al., Phys. Rev. C 82, 044310 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Y.H. Kim et al., Eur. Phys. J. A 53, 162 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    B. Bruyneel et al., Eur. Phys. J. A 49, 61 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    I. Doxas, C. Nieter, D. Radford, K. Lagergren, J.R. Cary, Nucl. Instrum. Methods Phys. Res. A 580, 1331 (2007)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • H. J. Li
    • 1
  • J. Ljungvall
    • 2
    Email author
  • C. Michelagnoli
    • 3
    • 1
  • E. Clément
    • 1
  • J. Dudouet
    • 2
    • 4
  • P. Désesquelles
    • 2
  • A. Lopez-Martens
    • 2
  • G. de France
    • 1
  1. 1.GANIL, CEA/DRF-CNRS/IN2P3Caen Cedex 5France
  2. 2.CSNSM, Université Paris-Sud, CNRS/IN2P3, Université Paris-SaclayOrsayFrance
  3. 3.Institut Laue-LangevinGrenoble Cedex 9France
  4. 4.Université Lyon 1, CNRS/IN2P3, IPN-LyonVilleurbanneFrance

Personalised recommendations