Advertisement

How (not) to renormalize integral equations with singular potentials in effective field theory

  • E. Epelbaum
  • A. M. Gasparyan
  • J. Gegelia
  • Ulf-G. Meißner
Regular Article - Theoretical Physics
  • 29 Downloads

Abstract.

We discuss the connection between the perturbative and non-perturbative renormalization and related conceptual issues in the few-nucleon sector of the low-energy effective field theory of the strong interactions. General arguments are supported by examples from effective theories with and without pions as dynamical degrees of freedom. A quantum mechanical potential with explicitly specified short- and long-range parts is considered as an “underlying fundamental theory” and the corresponding effective field theory potential is constructed. Further, the problem of the effective field theoretical renormalization of the Skornyakov-Ter-Martyrosian equation is revisited.

References

  1. 1.
    S. Weinberg, Phys. Lett. B 251, 288 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    S. Weinberg, Nucl. Phys. B 363, 3 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    C. Ordonez, U. van Kolck, Phys. Lett. B 291, 459 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625, 758 (1997) arXiv:nucl-th/9706045ADSCrossRefGoogle Scholar
  5. 5.
    N. Kaiser, Phys. Rev. C 61, 014003 (2000) arXiv:nucl-th/9910044ADSCrossRefGoogle Scholar
  6. 6.
    P.F. Bedaque, H.W. Hammer, U. van Kolck, Nucl. Phys. A 676, 357 (2000) arXiv:nucl-th/9906032ADSCrossRefGoogle Scholar
  7. 7.
    P.F. Bedaque, G. Rupak, H.W. Griesshammer, H.W. Hammer, Nucl. Phys. A 714, 589 (2003) arXiv:nucl-th/0207034ADSCrossRefGoogle Scholar
  8. 8.
    H.W. Griesshammer, Nucl. Phys. A 760, 110 (2005) arXiv:nucl-th/0502039ADSCrossRefGoogle Scholar
  9. 9.
    N. Kaiser, Phys. Rev. C 64, 057001 (2001) arXiv:nucl-th/0107064ADSCrossRefGoogle Scholar
  10. 10.
    M.P. Valderrama, E. Ruiz Arriola, Phys. Lett. B 580, 149 (2004) arXiv:nucl-th/0306069ADSCrossRefGoogle Scholar
  11. 11.
    M.P. Valderrama, E. Ruiz Arriola, Phys. Rev. C 72, 054002 (2005) arXiv:nucl-th/0504067ADSCrossRefGoogle Scholar
  12. 12.
    M.P. Valderrama, E. Ruiz Arriola, Phys. Rev. C 74, 064004 (2006) arXiv:nucl-th/0507075ADSCrossRefGoogle Scholar
  13. 13.
    M.C. Birse, J.A. McGovern, Phys. Rev. C 70, 054002 (2004) arXiv:nucl-th/0307050ADSCrossRefGoogle Scholar
  14. 14.
    M.C. Birse, Phys. Rev. C 74, 014003 (2006) arXiv:nucl-th/0507077ADSCrossRefGoogle Scholar
  15. 15.
    J.V. Steele, R.J. Furnstahl, Nucl. Phys. A 645, 439 (1999) arXiv:nucl-th/9808022ADSCrossRefGoogle Scholar
  16. 16.
    M. Lutz, Nucl. Phys. A 677, 241 (2000) arXiv:nucl-th/9906028ADSCrossRefGoogle Scholar
  17. 17.
    R. Higa, M.R. Robilotta, Phys. Rev. C 68, 024004 (2003) arXiv:nucl-th/0304025ADSCrossRefGoogle Scholar
  18. 18.
    R. Higa, M.R. Robilotta, C.A. da Rocha, Phys. Rev. C 69, 034009 (2004) arXiv:nucl-th/0310011ADSCrossRefGoogle Scholar
  19. 19.
    M.D. Cozma, O. Scholten, R.G. Timmermans, J.A. Tjon, Phys. Rev. C 75, 014006 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    L. Girlanda, M. Viviani, W.H. Klink, Phys. Rev. C 76, 044002 (2007) arXiv:nucl-th/0702024ADSCrossRefGoogle Scholar
  21. 21.
    E. Epelbaum, U.-G. Meißner, W. Glöckle, Nucl. Phys. A 714, 535 (2003) arXiv:nucl-th/0207089ADSCrossRefGoogle Scholar
  22. 22.
    E. Epelbaum et al., Phys. Rev. Lett. 86, 4787 (2001) arXiv:nucl-th/0007057ADSCrossRefGoogle Scholar
  23. 23.
    E. Epelbaum et al., Phys. Rev. C 66, 064001 (2002) arXiv:nucl-th/0208023ADSCrossRefGoogle Scholar
  24. 24.
    E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 637, 107 (1998) arXiv:nucl-th/9801064ADSCrossRefGoogle Scholar
  25. 25.
    E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 671, 295 (2000) arXiv:nucl-th/9910064ADSCrossRefGoogle Scholar
  26. 26.
    D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 478, 629 (1996) arXiv:nucl-th/9605002ADSCrossRefGoogle Scholar
  27. 27.
    D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998) arXiv:nucl-th/9801034ADSCrossRefGoogle Scholar
  28. 28.
    D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998) arXiv:nucl-th/9802075ADSCrossRefGoogle Scholar
  29. 29.
    T.D. Cohen, J.M. Hansen, Phys. Rev. C 59, 3047 (1999) arXiv:nucl-th/9901065ADSCrossRefGoogle Scholar
  30. 30.
    S. Fleming, T. Mehen, I.W. Stewart, Nucl. Phys. A 677, 313 (2000) arXiv:nucl-th/9911001ADSCrossRefGoogle Scholar
  31. 31.
    S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire, U. van Kolck, Phys. Rev. A 64, 042103 (2001) arXiv:quant-ph/0010073ADSCrossRefGoogle Scholar
  32. 32.
    S.R. Beane, P.F. Bedaque, M.J. Savage, U. van Kolck, Nucl. Phys. A 700, 377 (2002) arXiv:nucl-th/0104030ADSCrossRefGoogle Scholar
  33. 33.
    A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005) arXiv:nucl-th/0506005ADSCrossRefGoogle Scholar
  34. 34.
    G.P. Lepage, arXiv:nucl-th/9706029Google Scholar
  35. 35.
    T.S. Park, K. Kubodera, D.P. Min, M. Rho, Nucl. Phys. A 646, 83 (1999) arXiv:nucl-th/9807054ADSCrossRefGoogle Scholar
  36. 36.
    G.P. Lepage, Conference summary, in Nuclear Physics with Effective Field Theory II: Proceedings, Seattle, Washington, 25–26 Feb. 1999 (World Scientific, Singapore, 2000)Google Scholar
  37. 37.
    T. Frederico, V.S. Timoteo, L. Tomio, Nucl. Phys. A 653, 209 (1999) arXiv:nucl-th/9902052ADSCrossRefGoogle Scholar
  38. 38.
    V.S. Timoteo, T. Frederico, A. Delfino, L. Tomio, Phys. Lett. B 621, 109 (2005) arXiv:nucl-th/0508006ADSCrossRefGoogle Scholar
  39. 39.
    V.S. Timoteo, T. Frederico, A. Delfino, L. Tomio, Phys. Rev. C 83, 064005 (2011) arXiv:1006.1942 [nucl-th]ADSCrossRefGoogle Scholar
  40. 40.
    C.-J. Yang, C. Elster, D.R. Phillips, Phys. Rev. C 80, 044002 (2009) arXiv:0905.4943 [nucl-th]ADSCrossRefGoogle Scholar
  41. 41.
    M.C. Birse, Philos. Trans. R. Soc. London A 369, 2662 (2011) arXiv:1012.4914 [nucl-th]ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    M.P. Valderrama, Phys. Rev. C 83, 024003 (2011) arXiv:0912.0699 [nucl-th]ADSCrossRefGoogle Scholar
  43. 43.
    M. Pavon Valderrama, Phys. Rev. C 84, 064002 (2011) arXiv:1108.0872 [nucl-th]ADSCrossRefGoogle Scholar
  44. 44.
    B. Long, C.J. Yang, Phys. Rev. C 85, 034002 (2012) arXiv:1111.3993 [nucl-th]ADSCrossRefGoogle Scholar
  45. 45.
    B. Long, U. van Kolck, Ann. Phys. 323, 1304 (2008) arXiv:0707.4325 [quant-ph]ADSCrossRefGoogle Scholar
  46. 46.
    E. Epelbaum, J. Gegelia, Eur. Phys. J. A 41, 341 (2009) arXiv:0906.3822 [nucl-th]ADSCrossRefGoogle Scholar
  47. 47.
    D. Djukanovic, J. Gegelia, S. Scherer, M.R. Schindler, Few Body Syst. 41, 141 (2007) arXiv:nucl-th/0609055ADSCrossRefGoogle Scholar
  48. 48.
    J. Gegelia, G. Japaridze, Phys. Lett. B 517, 476 (2001) arXiv:nucl-th/0108005ADSCrossRefGoogle Scholar
  49. 49.
    M.C. Birse, J.A. McGovern, K.G. Richardson, Phys. Lett. B 464, 169 (1999) arXiv:hep-ph/9807302ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    J. Gegelia, in Nonperturbative Methods in Quantum Field Theory: Proceedings (World Scientific, Singapore, 1998) pp. 30--35, arXiv:nucl-th/9802038Google Scholar
  51. 51.
    K. Harada, H. Kubo, Nucl. Phys. B 758, 304 (2006) arXiv:nucl-th/0605004ADSCrossRefGoogle Scholar
  52. 52.
    M.J. Savage, in Nuclear Physics with Effective Field Theory: Proceedings (World Scientific, Singapore, 1998) pp. 247--267, arXiv:nucl-th/9804034Google Scholar
  53. 53.
    X.L. Ren, K.W. Li, L.S. Geng, B.W. Long, P. Ring, J. Meng, Chin. Phys. C 42, 014103 (2018) arXiv:1611.08475 [nucl-th]ADSCrossRefGoogle Scholar
  54. 54.
    M. Pavón Valderrama, M. Sánchez Sánchez, C.J. Yang, B. Long, J. Carbonell, U. van Kolck, Phys. Rev. C 95, 054001 (2017) arXiv:1611.10175 [nucl-th]ADSCrossRefGoogle Scholar
  55. 55.
    R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011) arXiv:1105.2919 [nucl-th]ADSCrossRefGoogle Scholar
  56. 56.
    E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006) arXiv:nucl-th/0509032ADSCrossRefGoogle Scholar
  57. 57.
    E. Epelbaum, U.-G. Meißner, Annu. Rev. Nucl. Part. Sci. 62, 159 (2012) arXiv:1201.2136 [nucl-th]ADSCrossRefGoogle Scholar
  58. 58.
    P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002) arXiv:nucl-th/0203055ADSCrossRefGoogle Scholar
  59. 59.
    E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009) arXiv:0811.1338 [nucl-th]ADSCrossRefGoogle Scholar
  60. 60.
    M.C. Birse, PoS CD09, 078 (2009) arXiv:0909.4641 [nucl-th]Google Scholar
  61. 61.
    M.P. Valderrama, Int. J. Mod. Phys. E 25, 1641007 (2016) arXiv:1604.01332 [nucl-th]ADSCrossRefGoogle Scholar
  62. 62.
    J. Gasser, H. Leutwyler, Phys. Rep. 87, 77 (1982)ADSCrossRefGoogle Scholar
  63. 63.
    S. Weinberg, The Quantum Theory of Fields, Vols. 1, 2: Foundations, Modern applications (Cambridge, University Press, 1995)Google Scholar
  64. 64.
    J.C. Collins, Renormalization. An Introduction to Renormalization, the Renormalization Group, and the Operator Product Expansion (Cambridge, University Press, 1984)Google Scholar
  65. 65.
    E. Epelbaum, J. Gegelia, U.-G. Meißner, arXiv:1710.04178 [nucl-th]Google Scholar
  66. 66.
    S.R. Beane, T.D. Cohen, D.R. Phillips, Nucl. Phys. A 632, 445 (1998) arXiv:nucl-th/9709062ADSCrossRefGoogle Scholar
  67. 67.
    J. Gegelia, Phys. Lett. B 429, 227 (1998)ADSCrossRefGoogle Scholar
  68. 68.
    J. Gegelia, J. Phys. G 25, 1681 (1999) arXiv:nucl-th/9805008ADSCrossRefGoogle Scholar
  69. 69.
    E. Epelbaum, J. Gegelia, U.-G. Meißner, Nucl. Phys. B 925, 161 (2017) arXiv:1705.02524 [nucl-th]ADSCrossRefGoogle Scholar
  70. 70.
    W. Frank, D.J. Land, R.M. Spector, Rev. Mod. Phys. 43, 36 (1971)ADSCrossRefGoogle Scholar
  71. 71.
    E. Epelbaum, H. Krebs, U.-G. Meißner, Eur. Phys. J. A 51, 53 (2015) arXiv:1412.0142 [nucl-th]ADSCrossRefGoogle Scholar
  72. 72.
    J. Gegelia, S. Scherer, Int. J. Mod. Phys. A 21, 1079 (2006) arXiv:nucl-th/0403052ADSCrossRefGoogle Scholar
  73. 73.
    E. Epelbaum, U.-G. Meißner, Few Body Syst. 54, 2175 (2013) arXiv:nucl-th/0609037ADSCrossRefGoogle Scholar
  74. 74.
    E. Epelbaum, A.M. Gasparyan, J. Gegelia, H. Krebs, Eur. Phys. J. A 51, 71 (2015) arXiv:1501.01191 [nucl-th]ADSCrossRefGoogle Scholar
  75. 75.
    P.F. Bedaque, H.W. Hammer, U. van Kolck, Nucl. Phys. A 646, 444 (1999) arXiv:nucl-th/9811046ADSCrossRefGoogle Scholar
  76. 76.
    G.V. Skornyakov, Ter-Martirosyan, Sov. Phys. JETP 4, 648 (1957) Zh. Eksp. Teor. Fiz. 31Google Scholar
  77. 77.
    G.S. Danilov, Sov. Phys. JETP 13, 349 (1961)Google Scholar
  78. 78.
    P.F. Bedaque, H.W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999) arXiv:nucl-th/9809025ADSCrossRefGoogle Scholar
  79. 79.
    E. Epelbaum, J. Gegelia, U.-G. Meißner, D.L. Yao, Eur. Phys. J. A 53, 98 (2017) arXiv:1611.06040 [nucl-th]ADSCrossRefGoogle Scholar
  80. 80.
    S. Moroz, S. Floerchinger, R. Schmidt, C. Wetterich, Phys. Rev. A 79, 042705 (2009) arXiv:0812.0528 [cond-mat.stat-mech]ADSCrossRefGoogle Scholar
  81. 81.
    K. Harada, H. Kubo, I. Yoshimoto, Phys. Rev. D 87, 085006 (2013) arXiv:1208.0719 [hep-th]ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • E. Epelbaum
    • 1
  • A. M. Gasparyan
    • 1
    • 2
  • J. Gegelia
    • 3
    • 4
  • Ulf-G. Meißner
    • 5
    • 3
  1. 1.Institut für Theoretische Physik II, Fakultät für Physik und AstronomieRuhr-Universität BochumBochumGermany
  2. 2.Institute for Theoretical and Experimental PhysicsMoscowRussia
  3. 3.Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum JülichJülichGermany
  4. 4.Tbilisi State UniversityTbilisiGeorgia
  5. 5.Helmholtz Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany

Personalised recommendations