Advertisement

Energy conservation and the prevalence of power distributions

  • Maciej Rybczyński
  • Zbigniew Włodarczyk
Open Access
Regular Article - Theoretical Physics
  • 54 Downloads

Abstract.

We analyze a connection between energy and multiplicity distributions in a statistical framework. We check the influence of energy conservation for the mechanism of particle production in relativistic proton+proton interactions. We found that energy conservation constraints may lead to the quasi-power law distributions for energy with exponent \(\kappa\) depending on multiplicity distribution.

References

  1. 1.
    V.V. Begun, M. Gazdzicki, M.I. Gorenstein, Phys. Rev. C 78, 024904 (2008) arXiv:0804.0075 [hep-ph]ADSCrossRefGoogle Scholar
  2. 2.
    V.V. Begun, M. Gazdzicki, M.I. Gorenstein, Acta Phys. Pol. B 43, 1713 (2012) arXiv:1201.5843 [nucl-th]CrossRefGoogle Scholar
  3. 3.
    M. Rybczyński and Z. Włodarczyk, Eur. Phys. J. A 51, 80 (2015) arXiv:1505.03663 [hep-ph]ADSCrossRefGoogle Scholar
  4. 4.
    G. Wilk, Z. Wlodarczyk, Physica A 390, 3566 (2011) arXiv:1102.1824 [cond-mat.stat-mech]ADSCrossRefGoogle Scholar
  5. 5.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer, New York, 2009)Google Scholar
  7. 7.
    C. Michael, L. Vanryckeghem, J. Phys. G 3, L151 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    C. Michael, Prog. Part. Nucl. Phys. 2, 1 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    R. Hagedorn, Riv. Nuovo Cimento 6, N. 10 (1983)Google Scholar
  10. 10.
    G. Wilk, Z. Włodarczyk, Int. J. Mod. Phys. A 33, 1830008 (2018) arXiv:1803.07832 [hep-ph]ADSCrossRefGoogle Scholar
  11. 11.
    G. Wilk, Z. Wlodarczyk, Eur. Phys. J. A 40, 299 (2009) arXiv:0810.2939 [hep-ph]ADSCrossRefGoogle Scholar
  12. 12.
    G. Wilk, Z. Wlodarczyk, Eur. Phys. J. A 48, 161 (2012) arXiv:1203.4452 [hep-ph]ADSCrossRefGoogle Scholar
  13. 13.
    B. Corominas-Murtra, R. Hane, S. Thurner, Sci. Rep. 7, 11223 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    J.F.C. Kingman, Poisson Processes, Oxford Studies in Probability, Vol. 3 (The Clarendon Press, Oxford University Press, New York, 1993)Google Scholar
  15. 15.
    T. Huillet, Commun. Stat. Theory Methods 34, 1019 (2005)CrossRefGoogle Scholar
  16. 16.
    W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II (John Wiley and Sons Inc., New York, 1966)Google Scholar
  17. 17.
    M. Shibata, Phys. Rev. D 24, 1847 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    C.Y. Wong, Phys. Rev. D 30, 972 (1984)ADSCrossRefGoogle Scholar
  19. 19.
    G. Wilk, Z. Włodarczyk, Acta Phys. Pol. B 46, 1103 (2015) arXiv:1501.01936 [cond-mat.stat-mech]ADSCrossRefGoogle Scholar
  20. 20.
    R. Szwed, G. Wrochna, A.K. Wroblewski, Acta Phys. Pol. B 19, 763 (1988)Google Scholar
  21. 21.
    V.V. Begun, M. Gazdzicki, M.I. Gorenstein, Phys. Rev. C 80, 064903 (2009) arXiv:0812.3078 [hep-ph]ADSCrossRefGoogle Scholar
  22. 22.
    F.S. Navarra, O.V. Utyuzh, G. Wilk, Z. Wlodarczyk, Phys. Rev. D 67, 114002 (2003) arXiv:hep-ph/0301258ADSCrossRefGoogle Scholar
  23. 23.
    T. Wibig, J. Phys. G 37, 115009 (2010) arXiv:1005.5652 [hep-ph]ADSCrossRefGoogle Scholar
  24. 24.
    G. Wilk, Z. Wlodarczyk, Physica A 376, 279 (2007) arXiv:cond-mat/0603157ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of PhysicsJan Kochanowski UniversityKielcePoland

Personalised recommendations