Advertisement

Halo structure of 17C

  • J. Braun
  • H. -W. HammerEmail author
  • L. Platter
Regular Article - Theoretical Physics

Abstract.

17C has three states below the 16C + n threshold with quantum numbers \(J^{P}=3/2^{+}, 1/2^{+}, 5/2^{+}\). These states have relatively small neutron separation energies compared to the neutron separation and excitation energies of 16C. This separation of scales motivates our investigation of 17C in a halo effective field theory (Halo EFT) with a 16C core and a valence neutron as degrees of freedom. We discuss various properties of the three states such as electric radii, magnetic moments, electromagnetic transition rates and capture cross sections. In particular, we give predictions for the charge radius and the magnetic moment of the \( 1/2^{+}\) state and for neutron capture on 16C into this state. Furthermore, we discuss the predictive power of the Halo EFT approach for the \( 3/2^{+}\) and \( 5/2^{+}\) states which are described by a neutron in a D-wave relative to the core.

References

  1. 1.
    M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231, 151 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    P.G. Hansen, A.S. Jensen, B. Jonson, Annu. Rev. Nucl. Part. Sci. 45, 591 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    B. Jonson, Phys. Rep. 389, 1 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    K. Riisager, Phys. Scr. T152, 014001 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    P. Descouvemont, J. Phys. G 35, 014006 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    P. Schuck, Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki, T. Yamada, Phys. Scr. 91, 123001 (2016) arXiv:1702.02191 [nucl-th]ADSCrossRefGoogle Scholar
  8. 8.
    C.A. Bertulani, H.-W. Hammer, U. Van Kolck, Nucl. Phys. A 712, 37 (2002) arXiv:nucl-th/0205063ADSCrossRefGoogle Scholar
  9. 9.
    P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003) arXiv:nucl-th/0304007ADSCrossRefGoogle Scholar
  10. 10.
    E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006) arXiv:cond-mat/0410417ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    H.-W. Hammer, L. Platter, Annu. Rev. Nucl. Part. Sci. 60, 207 (2010) arXiv:1001.1981 [nucl-th]ADSCrossRefGoogle Scholar
  12. 12.
    H.-W. Hammer, D.R. Phillips, Nucl. Phys. A 865, 17 (2011) arXiv:1103.1087 [nucl-th]ADSCrossRefGoogle Scholar
  13. 13.
    L. Fernando, A. Vaghani, G. Rupak, arXiv:1511.04054 [nucl-th] (2015)Google Scholar
  14. 14.
    H.-W. Hammer, C. Ji, D.R. Phillips, J. Phys. G 44, 103002 (2017) arXiv:1702.08605 [nucl-th]ADSCrossRefGoogle Scholar
  15. 15.
    P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo, A. Calci, Phys. Scr. 91, 053002 (2016) arXiv:1601.03765 [nucl-th]ADSCrossRefGoogle Scholar
  16. 16.
    G. Hagen, N. Michel, Phys. Rev. C 86, 021602 (2012) arXiv:1206.2336 [nucl-th]ADSCrossRefGoogle Scholar
  17. 17.
    D. Smalley et al., Phys. Rev. C 92, 064314 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    D. Suzuki et al., Phys. Lett. B 666, 222 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    F. Ajzenberg-Selove, Nucl. Phys. A 460, 1 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    J. Braun, R. Roth, H.-W. Hammer, arXiv:1803.02169 [nucl-th] (2018)Google Scholar
  22. 22.
    D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998) arXiv:nucl-th/9801034ADSCrossRefGoogle Scholar
  23. 23.
    D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998) arXiv:nucl-th/9802075ADSCrossRefGoogle Scholar
  24. 24.
    L.S. Brown, G.M. Hale, Phys. Rev. C 89, 014622 (2014) arXiv:1308.0347 [nucl-th]ADSCrossRefGoogle Scholar
  25. 25.
    U. van Kolck, in Chiral Dynamics: Theory and Experiment, edited by A.M. Bernstein, D. Drechsel, T. Walcher, Lect. Notes Phys. Vol. 513 (Springer, 1998) p. 62, arXiv:hep-ph/9711222Google Scholar
  26. 26.
    U. van Kolck, Nucl. Phys. A 645, 273 (1999) arXiv:nucl-th/9808007ADSCrossRefGoogle Scholar
  27. 27.
    R. Kanungo et al., Phys. Rev. Lett. 117, 102501 (2016) arXiv:1608.08697 [nucl-ex]ADSCrossRefGoogle Scholar
  28. 28.
    P. Mueller et al., Phys. Rev. Lett. 99, 252501 (2007) arXiv:0801.0601 [nucl-ex]ADSCrossRefGoogle Scholar
  29. 29.
    Particle Data Group (W.M. Yao et al.), J. Phys. G 33, 1 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    J.-W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653, 386 (1999) arXiv:nucl-th/9902056ADSCrossRefGoogle Scholar
  31. 31.
    S. Typel, G. Baur, Nucl. Phys. A 759, 247 (2005) arXiv:nucl-th/0411069ADSCrossRefGoogle Scholar
  32. 32.
    S.R. Beane, M.J. Savage, Nucl. Phys. A 694, 511 (2001) arXiv:nucl-th/0011067ADSCrossRefGoogle Scholar
  33. 33.
    W. Greiner, J.A. Maruhn, Nuclear Models (Springer-Verlag, Berlin, Heidelberg, 1996)Google Scholar
  34. 34.
    G. Baur, C.A. Bertulani, H. Rebel, Nucl. Phys. A 458, 188 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    J.-W. Chen, G. Rupak, M.J. Savage, Phys. Lett. B 464, 1 (1999) arXiv:nucl-th/9905002ADSCrossRefGoogle Scholar
  36. 36.
    G. Hagen, P. Hagen, H.-W. Hammer, L. Platter, Phys. Rev. Lett. 111, 132501 (2013) arXiv:1306.3661 [nucl-th]ADSCrossRefGoogle Scholar
  37. 37.
    E. Ryberg, C. Forssén, H.-W. Hammer, L. Platter, Eur. Phys. J. A 50, 170 (2014) arXiv:1406.6908 [nucl-th]ADSCrossRefGoogle Scholar
  38. 38.
    X. Zhang, K.M. Nollett, D.R. Phillips, Phys. Rev. C 89, 051602 (2014) arXiv:1401.4482 [nucl-th]ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.ExtreMe Matter Institute EMMIGSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  3. 3.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA
  4. 4.Physics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations