Electrical resistivity and Hall effect in binary neutron star mergers
Abstract.
We examine the range of rest-mass densities, temperatures and magnetic fields involved in simulations of binary neutron star mergers and identify the conditions under which the ideal-magnetohydrodynamics approximation breaks down and hence the magnetic-field decay should be accounted for. We use recent calculations of the conductivities of warm correlated plasma in envelopes of compact stars and find that the magnetic-field decay timescales are much larger than the characteristic timescales of the merger process for lengthscales down to a meter. Because these are smaller than the currently available resolution in numerical simulations, the ideal-magnetohydrodynamics approximation is effectively valid for all realistic simulations. At the same time, we find that the Hall effect can be important at low densities and low temperatures, where it can induce a non-dissipative rearrangement of the magnetic field. Finally, we mark the region in temperature and density where the hydrodynamic description breaks down.
References
- 1.LIGO Scientific Collaboration, Virgo Collaboration, Phys. Rev. Lett. 119, 161101 (2017)ADSCrossRefGoogle Scholar
- 2.LIGO Scientific Collaboration, Virgo Collaboration, Astrophys. J. Lett. 848, L13 (2017) arXiv:1710.05834ADSCrossRefGoogle Scholar
- 3.LIGO Scientific Collaboration, Virgo Collaboration (B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese et al.), Astrophys. J. Lett. 848, L12 (2017)ADSCrossRefGoogle Scholar
- 4.B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams et al., Astrophys. J. Lett. 850, L39 (2017) arXiv:1710.05836ADSCrossRefGoogle Scholar
- 5.D.A. Coulter, R.J. Foley, C.D. Kilpatrick, M.R. Drout, A.L. Piro, B.J. Shappee et al., Science 358, 1556 (2017) arXiv:1710.05452ADSCrossRefGoogle Scholar
- 6.S. Smartt, T. Chen et al., Nature 551, 75 (2017) arXiv:1710.05841ADSGoogle Scholar
- 7.B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams et al., Nature 551, 85 (2017) arXiv:1710.05835ADSCrossRefGoogle Scholar
- 8.J.A. Faber, F.A. Rasio, Living Rev. Relativ. 15, 8 (2012)ADSCrossRefGoogle Scholar
- 9.V. Paschalidis, Class. Quantum Grav. 34, 084002 (2017) arXiv:1611.01519ADSCrossRefGoogle Scholar
- 10.L. Baiotti, L. Rezzolla, Rep. Prog. Phys. 80, 096901 (2017) arXiv:1607.03540ADSCrossRefGoogle Scholar
- 11.L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, M.A. Aloy, Astrophys. J. Lett. 732, L6 (2011) arXiv:1101.4298ADSCrossRefGoogle Scholar
- 12.K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, T. Wada, Phys. Rev. D 90, 041502 (2014) arXiv:1407.2660ADSCrossRefGoogle Scholar
- 13.C. Palenzuela, S.L. Liebling, D. Neilsen, L. Lehner, O.L. Caballero, E. O’Connor et al., Phys. Rev. D 92, 044045 (2015) arXiv:1505.01607ADSCrossRefGoogle Scholar
- 14.T. Kawamura, B. Giacomazzo, W. Kastaun, R. Ciolfi, A. Endrizzi, L. Baiotti et al., Phys. Rev. D 94, 064012 (2016) arXiv:1607.01791ADSCrossRefGoogle Scholar
- 15.M. Ruiz, R.N. Lang, V. Paschalidis, S.L. Shapiro, Astrophys. J. Lett. 824, L6 (2016) arXiv:1604.02455ADSCrossRefGoogle Scholar
- 16.K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, Global simulations of strongly magnetized remnant massive neutron stars formed in binary neutron star mergers, arXiv:1710.01311 (2017)Google Scholar
- 17.M. Ruiz, S.L. Shapiro, A. Tsokaros, Phys. Rev. D 97, 021501 (2018) arXiv:1711.00473ADSCrossRefGoogle Scholar
- 18.K. Dionysopoulou, D. Alic, C. Palenzuela, L. Rezzolla, B. Giacomazzo, Phys. Rev. D 88, 044020 (2013) arXiv:1208.3487ADSCrossRefGoogle Scholar
- 19.C. Palenzuela, L. Lehner, S.L. Liebling, M. Ponce, M. Anderson, D. Neilsen et al., Phys. Rev. D 88, 043011 (2013) arXiv:1307.7372ADSCrossRefGoogle Scholar
- 20.C. Palenzuela, L. Lehner, M. Ponce, S.L. Liebling, M. Anderson, D. Neilsen et al., Phys. Rev. Lett. 111, 061105 (2013) arXiv:1301.7074ADSCrossRefGoogle Scholar
- 21.K. Dionysopoulou, D. Alic, L. Rezzolla, Phys. Rev. D 92, 084064 (2015) arXiv:1502.02021ADSCrossRefGoogle Scholar
- 22.A. Harutyunyan, A. Sedrakian, Phys. Rev. C 94, 025805 (2016) arXiv:1605.07612ADSCrossRefGoogle Scholar
- 23.K.N. Gourgouliatos, R. Hollerbach, Mon. Not. R. Astron. Soc. 463, 3381 (2016) arXiv:1607.07874ADSCrossRefGoogle Scholar
- 24.L.L. Kitchatinov, Astron. Lett. 43, 624 (2017) arXiv:1705.10077ADSCrossRefGoogle Scholar
- 25.M.G. Alford, L. Bovard, M. Hanauske, L. Rezzolla, K. Schwenzer, Phys. Rev. Lett. 120, 041101 (2018) arXiv:1707.09475ADSCrossRefGoogle Scholar
- 26.F. Rasio, S. Shapiro, Class. Quantum Grav. 16, R1 (1999) arXiv:gr-qc/9902019ADSCrossRefGoogle Scholar
- 27.E.P. Velikhov, Sov. Phys. JETP 9, 995 (1959)MathSciNetGoogle Scholar
- 28.S. Chandrasekhar, Proc. Natl. Acad. Sci. 46, 253 (1960)ADSCrossRefGoogle Scholar
- 29.M. Anderson, E.W. Hirschmann, L. Lehner, S.L. Liebling, P.M. Motl, D. Neilsen et al., Phys. Rev. Lett. 100, 191101 (2008) arXiv:0801.4387ADSCrossRefGoogle Scholar
- 30.Y.T. Liu, S.L. Shapiro, Z.B. Etienne, K. Taniguchi, Phys. Rev. D 78, 024012 (2008) arXiv:0803.4193ADSCrossRefGoogle Scholar
- 31.B. Giacomazzo, L. Rezzolla, L. Baiotti, Mon. Not. R. Astron. Soc. 399, L164 (2009) arXiv:0901.2722ADSCrossRefGoogle Scholar
- 32.K. Kiuchi, Y. Sekiguchi, M. Shibata, K. Taniguchi, Phys. Rev. D 80, 064037 (2009) arXiv:0904.4551ADSCrossRefGoogle Scholar
- 33.B. Giacomazzo, L. Rezzolla, L. Baiotti, Phys. Rev. D 83, 044014 (2011)ADSCrossRefGoogle Scholar
- 34.K. Kiuchi, P. Cerdá-Durán, K. Kyutoku, Y. Sekiguchi, M. Shibata, Phys. Rev. D 92, 124034 (2015) arXiv:1509.09205ADSCrossRefGoogle Scholar
- 35.D.M. Siegel, R. Ciolfi, A.I. Harte, L. Rezzolla, Phys. Rev. D 87, 121302(R) (2013) arXiv:1302.4368ADSCrossRefGoogle Scholar
- 36.T. Rembiasz, J. Guilet, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy, E. Müller, Mon. Not. R. Astron. Soc. 460, 3316 (2016) arXiv:1603.00466ADSCrossRefGoogle Scholar
- 37.M. Obergaulinger, M.A. Aloy, E. Müller, Astron. Astrophys. 515, A30 (2010) arXiv:1003.6031ADSCrossRefGoogle Scholar
- 38.J. Zrake, A.I. MacFadyen, Astrophys. J. 763, L12 (2013) arXiv:1210.4066ADSCrossRefGoogle Scholar
- 39.K. Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata, K. Taniguchi, T. Wada, Phys. Rev. D 92, 064034 (2015) arXiv:1506.06811ADSCrossRefGoogle Scholar
- 40.Z.B. Etienne, V. Paschalidis, R. Haas, P. Mösta, S.L. Shapiro, Class. Quantum Grav. 32, 175009 (2015) arXiv:1501.07276ADSCrossRefGoogle Scholar
- 41.C.J. Horowitz, D.K. Berry, C.M. Briggs, M.E. Caplan, A. Cumming, A.S. Schneider, Phys. Rev. Lett. 114, 031102 (2015) arXiv:1410.2197ADSCrossRefGoogle Scholar
- 42.N. Itoh, S. Uchida, Y. Sakamoto, Y. Kohyama, S. Nozawa, Astrophys. J. 677, 495 (2008) arXiv:0708.2967ADSCrossRefGoogle Scholar
- 43.A.Y. Potekhin, Astron. Astrophys. 351, 787 (1999) arXiv:astro-ph/9909100ADSGoogle Scholar
- 44.D.A. Baiko, A.D. Kaminker, A.Y. Potekhin, D.G. Yakovlev, Phys. Rev. Lett. 81, 5556 (1998) arXiv:physics/9811052ADSCrossRefGoogle Scholar
- 45.N. Itoh, H. Hayashi, Y. Kohyama, Astrophys. J. 418, 405 (1993)ADSCrossRefGoogle Scholar
- 46.N. Itoh, Y. Kohyama, Astrophys. J. 404, 268 (1993)ADSCrossRefGoogle Scholar
- 47.N. Itoh, Y. Kohyama, N. Matsumoto, M. Seki, Astrophys. J. 285, 758 (1984)ADSCrossRefGoogle Scholar
- 48.R. Nandkumar, C.J. Pethick, Mon. Not. R. Astron. Soc. 209, 511 (1984)ADSCrossRefGoogle Scholar
- 49.S. Mitake, S. Ichimaru, N. Itoh, Astrophys. J. 277, 375 (1984)ADSCrossRefGoogle Scholar
- 50.N. Itoh, S. Mitake, H. Iyetomi, S. Ichimaru, Astrophys. J. 273, 774 (1983)ADSCrossRefGoogle Scholar
- 51.A. Schmitt, P. Shternin, Reaction rates and transport in neutron stars, arXiv:1711.06520 (2017)Google Scholar
- 52.M. Hanauske, K. Takami, L. Bovard, L. Rezzolla, J.A. Font, F. Galeazzi et al., Phys. Rev. D 96, 043004 (2017) arXiv:1611.07152ADSCrossRefGoogle Scholar
- 53.W. Kastaun, R. Ciolfi, A. Endrizzi, B. Giacomazzo, Phys. Rev. D 96, 043019 (2017) arXiv:1612.03671ADSCrossRefGoogle Scholar
- 54.L. Bovard, D. Martin, F. Guercilena, A. Arcones, L. Rezzolla, O. Korobkin, Phys. Rev. D 96, 124005 (2017) arXiv:1709.09630ADSCrossRefGoogle Scholar
- 55.W. Kastaun, F. Galeazzi, Phys. Rev. D 91, 064027 (2015) arXiv:1411.7975ADSCrossRefGoogle Scholar
- 56.A. Harutyunyan, A. Sedrakian, PoS MPCS2015, 011 (2016) arXiv:1607.04541Google Scholar
- 57.A. Harutyunyan, Relativistic hydrodynamics and transport in strongly correlated systems, PhD Thesis, Goethe University, Franfurt am Main, Germany (2017)Google Scholar
- 58.L. Rezzolla, O. Zanotti, Relativistic Hydrodynamics (Oxford University Press, Oxford, UK, 2013)Google Scholar
- 59.A. Bauswein, O. Just, H.-T. Janka, N. Stergioulas, Astrophys. J. Lett. 850, L34 (2017) arXiv:1710.06843ADSCrossRefGoogle Scholar
- 60.B. Margalit, B.D. Metzger, Astrophys. J. Lett. 850, L19 (2017) arXiv:1710.05938ADSCrossRefGoogle Scholar
- 61.D. Radice, Astrophys. J. Lett. 838, L2 (2017) arXiv:1703.02046ADSCrossRefGoogle Scholar
- 62.L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. Lett. 852, L25 (2018) arXiv:1711.00314ADSCrossRefGoogle Scholar
- 63.M. Ruiz, S.L. Shapiro, A. Tsokaros, Phys. Rev. D 97, 021501 (2018) arXiv:1711.00473ADSCrossRefGoogle Scholar
- 64.M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku, Y. Sekiguchi et al., Phys. Rev. D 96, 123012 (2017) arXiv:1710.07579ADSCrossRefGoogle Scholar
- 65.V. Paschalidis, K. Yagi, D. Alvarez-Castillo, D.B. Blaschke, A. Sedrakian, Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars, arXiv:1712.00451 (2017)Google Scholar
- 66.E.R. Most, L.R. Weih, L. Rezzolla, J. Schaffner-Bielich, New constraints on radii and tidal deformabilities of neutron stars from GW170817, arXiv:1803.00549 (2018). Google Scholar
- 67.X.-G. Huang, M. Huang, D.H. Rischke, A. Sedrakian, Phys. Rev. D 81, 045015 (2010) arXiv:0910.3633ADSCrossRefGoogle Scholar
- 68.X.-G. Huang, A. Sedrakian, D.H. Rischke, Ann. Phys. 326, 3075 (2011) arXiv:1108.0602ADSCrossRefGoogle Scholar
- 69.J. Hernandez, P. Kovtun, JHEP 05, 1 (2017) arXiv:1703.08757ADSCrossRefGoogle Scholar