Advertisement

The \(\eta\)/s of the LQCD-EoS complied hadron gas of different sizes approach common minimum near the crossover temperature

  • Nachiketa Sarkar
  • Premomoy Ghosh
Regular Article - Theoretical Physics

Abstract.

We study the temperature dependence of the ratio of the shear viscosity to entropy density for the LQCD-contrasted hadron resonance gas of different finite system-sizes, which may represent the final state hadronic matter, formed in systems of ultra-relativistic collisions. The transport coefficient reaches the lowest common value, for the systems of different sizes of thermalized hadron gas, near the critical temperature \(T_{c}\) of the QCD crossover.

References

  1. 1.
    BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)CrossRefGoogle Scholar
  2. 2.
    PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    J.C. Collins, M.J. Perry, Phys. Rev. Lett. 34, 1353 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    E. Shuryak, Phys. Rep. 61, 71 (1980)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 86, 054908 (2012)CrossRefGoogle Scholar
  8. 8.
    B. Muller, J. Schukraft, B. Wyslouch, Annu. Rev. Nucl. Part. Sci. 62, 361 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    CMS Collaboration (V. Khachatryan et al.), JHEP 09, 091 (2010)Google Scholar
  10. 10.
    ATLAS Collaboration (G. Aad et al.), Phys. Rev. Lett. 116, 172301 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    CMS Collaboration (V. Khachatryan et al.), Phys. Lett. B 765, 193 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    G.S. Denikol, C. Gale, S. Jeon, J. Noronha, Phys. Rev. C 88, 064901 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    M. Gorenstein, M. Hauer, O. Moroz, Phys. Rev. C 77, 024911 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    J. Noronha-Hostler, J. Noronha, C. Greiner, Phys. Rev. Lett. 103, 172302 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    J. Noronha-Hostler, J. Noronha, C. Greiner, Phys. Rev. C 86, 024913 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    G.P. Kadam, H. Mishra, Phys. Rev. C 93, 025205 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    G.P. Kadam, H. Mishra, Nucl. Phys. A 934, 133 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    S. Pal, Phys. Lett. B 684, 211 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    N. Demir, S. Bass, Phys. Rev. Lett. 102, 172302 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    S. Borsanyi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti, K. Szabo, JHEP 01, 138 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    HotQCD Collaboration (A. Bazavov et al.), Phys. Rev. D 86, 034509 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann, Y. Maezawa, S. Mukherjee et al., Phys. Rev. Lett. 113, 072001 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 730, 99 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    F. Karsch, K. Redlich, A. Tawfik, Eur. Phys. J. C 29, 549 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    F. Karsch, K. Redlich, A. Tawfik, Phys. Lett. B 571, 67 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    A. Majumder, Berndt Muller, Phys. Rev. lett. 105, 252002 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    A. Andronic, P. Braun-Munzinger, J. Stachel, M. Winn, Phys. Lett. B 718, 80 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    D.H. Rischke, M.I. Gorenstein, H. Stoecker, W. Greiner, Z. Phys. C 51, 485 (1991)CrossRefGoogle Scholar
  29. 29.
    J. Cleymans, H. Satz, Z. Phys. C 57, 135 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1995)Google Scholar
  31. 31.
    M. Albright, J. Kapusta, C. Young, Phys. Rev. C 90, 024915 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    V. Vovchenko, D.V. Anchishkinm, M.I. Gorenstein, Phys. Rev. C 91, 024905 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    P.M. Lo, M. Marczenko, K. Redlich, C. Sasaki, Phys. Rev. C 92, 055206 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    A. Jakovac, Phys. Rev. D 88, 065012 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    A. Bazavov et al., Phys. Rev. Lett. 113, 172001 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    P. Alba et al., Phys. Rev. D 96, 034517 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    R. Hagedorn, J. Rafelski, Phys. Lett. B 97, 136 (1980)ADSCrossRefGoogle Scholar
  38. 38.
    N. Sarkar, P. Ghosh, Phys. Rev. C 96, 044901 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    K.A. Olive et al., Chin. Phys. C 38, 090001 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    K. Redlich, K. Zalewski, arXiv:1611.03746v1 [nucl-th] (2016)Google Scholar
  41. 41.
    A. Bhattacharyya, R. Ray, S. Samanta, S. Sur, Phys. Rev. C 91, 041901(R) (2015)ADSCrossRefGoogle Scholar
  42. 42.
    P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    P. Blanchard, S. Fortunato, H. Satz, Eur. Phys. J. C 34, 361 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Variable Energy Cyclotron Centre, HBNIKolkataIndia

Personalised recommendations