Advertisement

Low-lying positive parity bands in 162Yb

  • L. Mdletshe
  • S. S. Ntshangase
  • J. F. Sharpey-Schafer
  • S. N. T. Majola
  • T. R. S. Dinoko
  • N. A. Khumalo
  • E. A. Lawrie
  • R. A. Bark
  • T. D. Bucher
  • N. Erasmus
  • P. Jones
  • S. Jongile
  • B. V. Kheswa
  • J. J. Lawrie
  • L. Makhathini
  • K. L. Malatji
  • B. Maqabuka
  • J. Ndayishimye
  • S. P. Noncolela
  • O. Shirinda
  • M. A. Sithole
Regular Article - Experimental Physics
  • 39 Downloads

Abstract.

The structure of the low-lying positive parity bands in 162Yb has been studied at iThemba LABS, using the 150Sm(16O,4n)162Yb fusion-evaporation reaction. A band built on the first excited \(0^{+}_{2}\) state has been identified for the first time. In addition, we report new rotational levels that form the band structures of both the odd and even spin components of the \(\gamma\)-vibrational band. The first excited \(0^{+}_{2}\) band and the even spin members of the \(\gamma\)-vibrational band exhibit a Landau-Zenner crossing. This crossing demonstrates that the significant signature splitting between the odd and even spin members of the \(\gamma\) band is contributed to by band mixing.

References

  1. 1.
    J.F. Sharpey-Schafer et al., Eur. Phys. J. A 47, 5 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    J.F. Sharpey-Schafer et al., Eur. Phys. J. A 47, 6 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    S.P. Bvumbi et al., Phys. Rev. C 87, 044333 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    G.L. Zimba et al., Phys. Rev. C 94, 054303 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    S.N.T. Majola et al., Phys. Rev. C 91, 034330 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    W.D. Kulp et al., Phys. Rev. C 76, 034319 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    N. Pietralla, O.M. Gorbachenko, Phys. Rev. C 70, 011304(R) (2004)ADSCrossRefGoogle Scholar
  8. 8.
    W.D. Kulp et al., Phys. Rev. C 77, 061301 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    J. Smallcombe et al., Phys. Lett. B 732, 161 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    D. Bucurescu et al., Phys. Rev. C 73, 064309 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II (Word Scientific, Singapore, 1998) p. 363. Google Scholar
  12. 12.
    D.R. Bes, R.A. Broglia, Nucl. Phys. 80, 289 (1966)CrossRefGoogle Scholar
  13. 13.
    E.A. McCutchan et al., Phys. Rev. C 76, 024306 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    P.E. Garret et al., Phys. Lett. B 400, 250 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    D.R. Zolnowski et al., Phys. Rev. C 21, 2556 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Kuliev, N.I. Pyatov, Nucl. Phys. A 106, 689 (1968)ADSCrossRefGoogle Scholar
  17. 17.
    S.T. Belyaev, B.A. Rumiantsev, Phys. Lett. B 30, 444 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    O. Mikoshiba et al., Nucl. Phys. A 101, 202 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    I. Ragnarsson, R.A. Broglia, Nucl. Phys. A 263, 315 (1976)ADSCrossRefGoogle Scholar
  20. 20.
    P.E. Garrett, J. Phys. G 27, R1 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    E.A. McCutchan et al., Phys. Rev. C 69, 024308 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    N. Blasi et al., Phys. Rev. C 88, 014318 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    J.L. Conradie, in Cyclotrons and Their Applications, Proceedings, 18th International Conference, Catania, October 2007 (2007) p. 140Google Scholar
  24. 24.
    J.F. Sharpey-Schafer, Nucl. Phys. News Int. 14, 5 (2004)CrossRefGoogle Scholar
  25. 25.
    J.N. Mo et al., Nucl. Phys. A 472, 285 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    J.F. Sharpey-Schafer et al., PoS Bormio 2011, 003 (2011)Google Scholar
  27. 27.
    L.D. Landau, Phys. Z. Sov. 2, 46 (1932)Google Scholar
  28. 28.
    C. Zenner, Proc. R. Soc. London A 137, 696 (1932)ADSCrossRefGoogle Scholar
  29. 29.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980) p. 526Google Scholar
  30. 30.
    D.M. Cullen et al., Phys. Rev. Lett. 65, 1547 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    S.N.T. Majola, Z. Shi, B.Y. Song, R.A. Bark, Z.P. Li, S.Q. Zhang, to be published in Phys. Rev. CGoogle Scholar
  32. 32.
    J.M. Rees et al., Phys. Rev. C 83, 044314 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    R.F. Casten, Nuclear Structure From a Simple Perspective (Oxford University Press, Oxford, 1990) p. 194Google Scholar
  34. 34.
    L. Mdletshe, MSc Thesis, University of Zululand (2017)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • L. Mdletshe
    • 1
    • 3
  • S. S. Ntshangase
    • 1
  • J. F. Sharpey-Schafer
    • 2
  • S. N. T. Majola
    • 1
    • 3
  • T. R. S. Dinoko
    • 3
    • 4
  • N. A. Khumalo
    • 2
    • 3
  • E. A. Lawrie
    • 3
    • 2
  • R. A. Bark
    • 3
  • T. D. Bucher
    • 3
    • 5
  • N. Erasmus
    • 3
    • 2
  • P. Jones
    • 3
  • S. Jongile
    • 1
    • 3
  • B. V. Kheswa
    • 3
    • 6
  • J. J. Lawrie
    • 3
  • L. Makhathini
    • 3
    • 5
  • K. L. Malatji
    • 3
    • 5
  • B. Maqabuka
    • 2
    • 3
  • J. Ndayishimye
    • 3
  • S. P. Noncolela
    • 3
    • 2
  • O. Shirinda
    • 3
    • 5
  • M. A. Sithole
    • 2
    • 3
  1. 1.University of Zululand, Department of PhysicsKwaDlangezwaSouth Africa
  2. 2.University of the Western Cape, Department of PhysicsBellvilleSouth Africa
  3. 3.iThemba LABSNational Research FoundationSomerset-WestSouth Africa
  4. 4.National Metrology Institute of South Africa, DC Low Frequency and Radio FrequencyPretoriaSouth Africa
  5. 5.University of Stellenbosch, Department of PhysicsMatielandSouth Africa
  6. 6.University of Johannesburg, Department of Applied Physics and engineering MathematicsDoornfonteinSouth Africa

Personalised recommendations