Advertisement

The P2 experiment

A future high-precision measurement of the weak mixing angle at low momentum transfer
  • Dominik Becker
  • Razvan Bucoveanu
  • Carsten Grzesik
  • Kathrin Imai
  • Ruth Kempf
  • Matthias Molitor
  • Alexey Tyukin
  • Marco Zimmermann
  • David Armstrong
  • Kurt Aulenbacher
  • Sebastian Baunack
  • Rakitha Beminiwattha
  • Niklaus Berger
  • Peter Bernhard
  • Andrea Brogna
  • Luigi Capozza
  • Silviu Covrig Dusa
  • Wouter Deconinck
  • Jürgen Diefenbach
  • James Dunne
  • Jens Erler
  • Ciprian Gal
  • Michael Gericke
  • Boris Gläser
  • Mikhail Gorchtein
  • Boxing Gou
  • Wolfgang Gradl
  • Yoshio Imai
  • Krishna S. Kumar
  • Frank Maas
  • Juliette Mammei
  • Jie Pan
  • Preeti Pandey
  • Kent Paschke
  • Ivan Perić
  • Mark Pitt
  • Sakib Rahman
  • Seamus Riordan
  • David Rodríguez Piñeiro
  • Concettina Sfienti
  • Iurii Sorokin
  • Paul Souder
  • Hubert Spiesberger
  • Michaela Thiel
  • Valery Tyukin
  • Quirin Weitzel
Review
  • 44 Downloads

Abstract.

We describe the research and development work for the P2 experiment which aims for a high precision determination of the weak mixing angle \(\sin^{2}\theta_{W}\) to a precision of 0.15% at a four-momentum transfer of \(4.5\times 10^{-3}\) GeV2. This accuracy, comparable to existing measurements at the Z pole, allows for a sensitive test of the Standard Model up to a mass scale of 50 TeV, extendable to 60 TeV. The weak mixing angle is connected to the weak charge of the proton which will be extracted from a measurement of the parity violating cross section asymmetry \(-39.94 \times 10^{-9}\) in elastic electron-proton scattering. A total accuracy of \(0.57 \times 10^{-9}\) is achievable in a measurement time of 11000 h using a 150μA polarized electron beam impinging on a 60 cm liquid hydrogen target. The P2 asymmetry is smaller than any asymmetry measured so far in electron scattering with an unprecedented goal for the accuracy. The use of a solenoid spectrometer with 100% \(\phi\)-acceptance as well as an atomic hydrogen trap polarimeter are new features, which have never before been used in parity-violation experiments. In order to collect the enormous statistics required for this measurement, the new Mainz Energy-Recovering Superconducting Accelerator (MESA) is under construction. Plans for the associated beam control system and the polarimetry are described in this article as well. A liquid hydrogen high-power target with an extremely low noise level of 10 ppm needs to be designed and constructed. We report in addition on the conceptual design of the P2 spectrometer, its Cherenkov detectors, the integrating read-out electronics as well as the ultra-thin, fast tracking detectors. The physics program of the MESA facility comprises indirect, high precision search for physics beyond the Standard Model, measurement of the neutron distribution in nuclear physics, single-spin asymmetries, and a possible future extension to the measurement of hadronic parity violation.

References

  1. 1.
    T.D. Lee, C.-N. Yang, Phys. Rev. 104, 254 (1956)ADSCrossRefGoogle Scholar
  2. 2.
    C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Phys. Rev. 105, 1413 (1957)ADSCrossRefGoogle Scholar
  3. 3.
    R.L. Garwin, L.M. Lederman, M. Weinrich, Phys. Rev. 105, 1415 (1957)ADSCrossRefGoogle Scholar
  4. 4.
    Ya.B. Zeldovich, Sov. Phys. JETP 36, 964 (1959)Google Scholar
  5. 5.
    C.Y. Prescott et al., Phys. Lett. B 77, 347 (1978)ADSCrossRefGoogle Scholar
  6. 6.
    M.A. Bouchiat, J. Guena, L. Hunter, L. Pottier, Phys. Lett. B 117, 358 (1982) 121ADSCrossRefGoogle Scholar
  7. 7.
    W. Heil et al., Nucl. Phys. B 327, 1 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    P.A. Souder et al., Phys. Rev. Lett. 65, 694 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    D.B. Kaplan, A. Manohar, Nucl. Phys. B 310, 527 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    SAMPLE Collaboration (B. Mueller et al.), Phys. Rev. Lett. 78, 3824 (1997) arXiv:nucl-ex/9702004CrossRefGoogle Scholar
  11. 11.
    SAMPLE Collaboration (D.T. Spayde et al.), Phys. Rev. Lett. 84, 1106 (2000) arXiv:nucl-ex/9909010ADSCrossRefGoogle Scholar
  12. 12.
    SAMPLE Collaboration (S.P. Wells et al.), Phys. Rev. C 63, 064001 (2001) arXiv:nucl-ex/0002010CrossRefGoogle Scholar
  13. 13.
    SAMPLE Collaboration (R. Hasty et al.), Science 290, 2117 (2000) arXiv:nucl-ex/0102001CrossRefGoogle Scholar
  14. 14.
    SAMPLE Collaboration (D.T. Spayde et al.), Phys. Lett. B 583, 79 (2004) arXiv:nucl-ex/0312016ADSCrossRefGoogle Scholar
  15. 15.
    SAMPLE Collaboration (T.M. Ito et al.), Phys. Rev. Lett. 92, 102003 (2004) arXiv:nucl-ex/0310001CrossRefGoogle Scholar
  16. 16.
    A4 Collaboration (F.E. Maas et al.), Phys. Rev. Lett. 93, 022002 (2004) arXiv:nucl-ex/0401019CrossRefGoogle Scholar
  17. 17.
    A4 Collaboration (S. Baunack et al.), Nucl. Instrum. Methods A 640, 58 (2011) arXiv:1102.5640 [nucl-ex]CrossRefGoogle Scholar
  18. 18.
    P. Achenbach et al., Nucl. Instrum. Methods A 416, 357 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    P. Achenbach, S. Baunack, K. Grimm, T. Hammel, D. von Harrach, A. Lopes-Ginja, F.E. Maas, E. Schilling, H. Stroher, Nucl. Instrum. Methods A 465, 318 (2001) arXiv:nucl-ex/0108019ADSCrossRefGoogle Scholar
  20. 20.
    F.E. Maas et al., Phys. Rev. Lett. 94, 082001 (2005) arXiv:nucl-ex/0410013ADSCrossRefGoogle Scholar
  21. 21.
    F.E. Maas et al., Phys. Rev. Lett. 94, 152001 (2005) arXiv:nucl-ex/0412030ADSCrossRefGoogle Scholar
  22. 22.
    T. Hammel et al., Nucl. Instrum. Methods A 564, 1 (2006) arXiv:nucl-ex/0504017ADSCrossRefGoogle Scholar
  23. 23.
    I. Altarev et al., Nucl. Instrum. Methods A 564, 13 (2006) arXiv:nucl-ex/0504024ADSCrossRefGoogle Scholar
  24. 24.
    S. Baunack et al., Phys. Rev. Lett. 102, 151803 (2009) arXiv:0903.2733 [nucl-ex]ADSCrossRefGoogle Scholar
  25. 25.
    D. Balaguer Ríos et al., Phys. Rev. D 94, 051101 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    D. Balaguer Ríos et al., Phys. Rev. Lett. 119, 012501 (2017)CrossRefADSGoogle Scholar
  27. 27.
    HAPPEX Collaboration (K.A. Aniol et al.), Phys. Rev. Lett. 82, 1096 (1999) arXiv:nucl-ex/9810012CrossRefGoogle Scholar
  28. 28.
    HAPPEX Collaboration (N. Falletto et al.), Nucl. Instrum. Methods A 459, 412 (2001)CrossRefGoogle Scholar
  29. 29.
    HAPPEX Collaboration (K.A. Aniol et al.), Phys. Lett. B 509, 211 (2001) arXiv:nucl-ex/0006002ADSCrossRefGoogle Scholar
  30. 30.
    HAPPEX Collaboration (K.A. Aniol et al.), Phys. Rev. C 69, 065501 (2004) arXiv:nucl-ex/0402004CrossRefGoogle Scholar
  31. 31.
    HAPPEX Collaboration (K.A. Aniol et al.), Phys. Rev. Lett. 96, 022003 (2006) arXiv:nucl-ex/0506010CrossRefGoogle Scholar
  32. 32.
    HAPPEX Collaboration (K.A. Aniol et al.), Phys. Lett. B 635, 275 (2006) arXiv:nucl-ex/0506011ADSCrossRefGoogle Scholar
  33. 33.
    HAPPEX Collaboration (A. Acha et al.), Phys. Rev. Lett. 98, 032301 (2007) arXiv:nucl-ex/0609002CrossRefGoogle Scholar
  34. 34.
    HAPPEX Collaboration (Z. Ahmed et al.), Phys. Rev. Lett. 108, 102001 (2012) arXiv:1107.0913 [nucl-ex]CrossRefGoogle Scholar
  35. 35.
    G0 Collaboration (D.S. Armstrong et al.), Phys. Rev. Lett. 95, 092001 (2005) arXiv:nucl-ex/0506021CrossRefGoogle Scholar
  36. 36.
    G0 Collaboration (David S. Armstrong et al.), Phys. Rev. Lett. 99, 092301 (2007) arXiv:0705.1525 [nucl-ex]CrossRefGoogle Scholar
  37. 37.
    G0 Collaboration (D. Androic et al.), Phys. Rev. Lett. 104, 012001 (2010) arXiv:0909.5107 [nucl-ex]ADSCrossRefGoogle Scholar
  38. 38.
    G0 Collaboration (D. Androic et al.), Nucl. Instrum. Methods A 646, 59 (2011) arXiv:1103.0761 [nucl-ex]CrossRefGoogle Scholar
  39. 39.
    G0 Collaboration (D. Androic et al.), Phys. Rev. Lett. 107, 022501 (2011) arXiv:1103.3667 [nucl-ex]CrossRefGoogle Scholar
  40. 40.
    G0 Collaboration (D. Androic et al.), Phys. Rev. Lett. 108, 122002 (2012) arXiv:1112.1720 [nucl-ex]CrossRefGoogle Scholar
  41. 41.
    M.J. Musolf, T.W. Donnelly, J. Dubach, S.J. Pollock, S. Kowalski, E.J. Beise, Phys. Rep. 239, 1 (1994) arXiv:nucl-th/9307022ADSCrossRefGoogle Scholar
  42. 42.
    K.S. Kumar, P.A. Souder, Prog. Part. Nucl. Phys. 45, S333 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    V.E. Lyubovitskij, P. Wang, T. Gutsche, Amand Faessler, Phys. Rev. C 66, 055204 (2002) arXiv:hep-ph/0207225ADSCrossRefGoogle Scholar
  44. 44.
    K.S. Kumar, S. Mantry, W.J. Marciano, P.A. Souder, Annu. Rev. Nucl. Part. Sci. 63, 237 (2013) arXiv:1302.6263 [hep-ex]ADSCrossRefGoogle Scholar
  45. 45.
    F.E. Maas, K.D. Paschke, Prog. Part. Nucl. Phys. 95, 209 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012) arXiv:1201.2568 [nucl-ex]ADSCrossRefGoogle Scholar
  47. 47.
    HAPPEX, PREX Collaborations (S. Abrahamyan et al.), Phys. Rev. Lett. 109, 192501 (2012) arXiv:1208.6164 [nucl-ex]CrossRefGoogle Scholar
  48. 48.
    SLAC E158 Collaboration (P.L. Anthony et al.), Phys. Rev. Lett. 92, 181602 (2004) arXiv:hep-ex/0312035CrossRefGoogle Scholar
  49. 49.
    SLAC E158 Collaboration (P.L. Anthony et al.), Phys. Rev. Lett. 95, 081601 (2005) arXiv:hep-ex/0504049CrossRefGoogle Scholar
  50. 50.
    PVDIS Collaboration (D. Wang et al.), Nature 506, 67 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    MOLLER Collaboration (J. Benesch), The MOLLER Experiment: An Ultra-Precise Measurement of the Weak Mixing Angle Using Møller Scattering, arXiv:1411.4088 [nucl-ex] (2014)Google Scholar
  52. 52.
    SoLID Collaboration (J.P. Chen, H. Gao, T.K. Hemmick, Z.-E. Meziani, P.A. Souder), A White Paper on SoLID (Solenoidal Large Intensity Device), arXiv:1409.7741 [nucl-ex] (2014)Google Scholar
  53. 53.
    R. Milner, R. Carlini, F. Maas, AIP Conf. Proc. 1563, 1 (2013)ADSGoogle Scholar
  54. 54.
    M.J. Ramsey-Musolf, Phys. Rev. C 60, 015501 (1999) arXiv:hep-ph/9903264ADSCrossRefGoogle Scholar
  55. 55.
    J. Erler, A. Kurylov, M.J. Ramsey-Musolf, Phys. Rev. D 68, 016006 (2003) arXiv:hep-ph/0302149ADSCrossRefGoogle Scholar
  56. 56.
    J. Erler, M.J. Ramsey-Musolf, Prog. Part. Nucl. Phys. 54, 351 (2005) arXiv:hep-ph/0404291ADSCrossRefGoogle Scholar
  57. 57.
    J. Erler, S.-F. Su, Prog. Part. Nucl. Phys. 71, 119 (2013) arXiv:1303.5522 [hep-ph]ADSCrossRefGoogle Scholar
  58. 58.
    R. Carlini, The Qweak Experiment at JLab, Conference Talk, PANIC2017, Beijing, Sept. 1–5 (2017)Google Scholar
  59. 59.
    H. Davoudiasl, H.-S. Lee, W.J. Marciano, Phys. Rev. D 85, 115019 (2012) arXiv:1203.2947 [hep-ph]ADSCrossRefGoogle Scholar
  60. 60.
    H. Davoudiasl, H.-S. Lee, W.J. Marciano, Phys. Rev. D 89, 095006 (2014) arXiv:1402.3620 [hep-ph]ADSCrossRefGoogle Scholar
  61. 61.
    J. Alexander, Dark Sectors 2016 Workshop: Community Report, 2016Google Scholar
  62. 62.
    M.J. Ramsey-Musolf, S. Su, Phys. Rep. 456, 1 (2008) arXiv:hep-ph/0612057ADSCrossRefGoogle Scholar
  63. 63.
    J. Erler, C.J. Horowitz, S. Mantry, P.A. Souder, Annu. Rev. Nucl. Part. Sci. 64, 269 (2014) arXiv:1401.6199 [hep-ph]ADSCrossRefGoogle Scholar
  64. 64.
    M.N. Rosenbluth, Phys. Rev. 79, 615 (1950)ADSCrossRefGoogle Scholar
  65. 65.
    M. Gorchtein, H. Spiesberger, X.L. Zhang, Phys. Lett. B 752, 135 (2016) arXiv:1509.08780 [nucl-th]ADSCrossRefGoogle Scholar
  66. 66.
    J.C. Bernauer, Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the $Q^{2}$ range from 0.004 to 1 $(\ab{GeV/c})^{2}$, PhD Thesis, JGU Mainz (2010)Google Scholar
  67. 67.
    M.A. El Yakoubi, Contribution du quark etrange a la structure electromagnetique du nucleon: Les resultats de l’éxperience PVA4 a $Q^{2} = 0.23$$(\ab{GeV/c})^{2}$, PhD Thesis, Université Paris Sud - Paris XI (2007)Google Scholar
  68. 68.
    S. Galster, H. Klein, J. Moritz, K.H. Schmidt, D. Wegener, J. Bleckwenn, Nucl. Phys. B 32, 221 (1971)ADSCrossRefGoogle Scholar
  69. 69.
    P. Wang, D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. C 79, 065202 (2009) arXiv:0807.0944 [hep-ph]ADSCrossRefGoogle Scholar
  70. 70.
    P. Larin, Voruntersuchungen für ein Präzisionsexperiment zur Messung der schwachen Ladung des Protons, Bachelor Thesis, JGU Mainz (2011)Google Scholar
  71. 71.
    B. Kubis, R. Lewis, Phys. Rev. C 74, 015204 (2006) arXiv:nucl-th/0605006ADSCrossRefGoogle Scholar
  72. 72.
    QWeak Collaboration (D. Androic et al.), Phys. Rev. Lett. 111, 141803 (2013) arXiv:1307.5275 [nucl-ex]CrossRefGoogle Scholar
  73. 73.
    V. Tioukine, K. Aulenbacher, Nucl. Instrum. Methods A 568, 537 (2006)ADSCrossRefGoogle Scholar
  74. 74.
    J. Grames, Two Wien filter spin flipper, in Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA (IEEE, 2011) pp. 862--865Google Scholar
  75. 75.
    S. Friederich, K. Aulenbacher, Test electron source for increased brightness emission by near band gap photoemission, in Proceedings of IPAC2015, Richmond, VA, USA (JACOW, 2015) pp. 1512--1514Google Scholar
  76. 76.
    K. Aulenbacher et al., Nucl. Instrum. Methods A 391, 498 (1997)ADSCrossRefGoogle Scholar
  77. 77.
    K. Aulenbacher, Eur. Phys. J. ST 198, 361 (2011)CrossRefGoogle Scholar
  78. 78.
    K. Aulenbacher, Erzeugung intensiver hochpolarisierter Elektronenstrahlen mit hoher Symmetrie unter Helizitätswechsel (Shaker Verlag Aachen, 2006)Google Scholar
  79. 79.
    K. Aulenbacher, I. Alexander, E. Riehn, V. Tioukine, J. Phys. Conf. Ser. 298, 012019 (2011)CrossRefGoogle Scholar
  80. 80.
    K. Aulenbacher, I. Alexander, V. Tioukine, Nuovo Cimento C 035, 186 (2012)Google Scholar
  81. 81.
    A. Gellrich, K. Jost, J. Kessler, Rev. Sci. Instrum. 61, 3399 (1990)ADSCrossRefGoogle Scholar
  82. 82.
    A. Gellrich, J. Kessler, Phys. Rev. A 43, 204 (1991)ADSCrossRefGoogle Scholar
  83. 83.
    S. Mayer, T. Fischer, W. Blaschke, J. Kessler, Rev. Sci. Instrum. 64, 952 (1993)ADSCrossRefGoogle Scholar
  84. 84.
    M. Steigerwald, Polarisationsanalyse des Elektronenstrahls der MAMI-Quelle polarisierter Elektronen mittels Mott-Streuung, Diploma Thesis, JGU Mainz (1994)Google Scholar
  85. 85.
    M. Molitor, Präzisionsmessung der Strahlpolarisation für das P2 Experiment an MESA mittels Doppel-Mott-Streuung, Phd Thesis (in preparation), JGU Mainz (2018)Google Scholar
  86. 86.
    H. Hopster, D.L. Abraham, Rev. Sci. Instrum. 59, 49 (1988)ADSCrossRefGoogle Scholar
  87. 87.
    V. Tioukine, K. Aulenbacher, E. Riehn, Rev. Sci. Instrum. 82, 033303 (2011)ADSCrossRefGoogle Scholar
  88. 88.
    M.A. Khakoo, D. Roundy, C. Hicks, N. Margolis, E. Yeung, A.W. Ross, T.J. Gay, Phys. Rev. A 64, 052713 (2001)ADSCrossRefGoogle Scholar
  89. 89.
    K. Aulenbacher, V. Tioukine, AIP Conf. Proc. 1149, 1155 (2008)ADSGoogle Scholar
  90. 90.
    X. Roca-Maza, Theoretical calculations for precision polarimetry based on Mott scattering, arXiv:1710.0863 (2017)Google Scholar
  91. 91.
    M. Steigerwald, AIP Conf. Proc. 570, 935 (2001)ADSCrossRefGoogle Scholar
  92. 92.
    E. Chudakov, V. Luppov, IEEE Trans. Nucl. Sci. 51, 1533 (2004)ADSCrossRefGoogle Scholar
  93. 93.
    M. Mertig et al., Rev. Sci. Instrum. 62, 251 (1991)ADSCrossRefGoogle Scholar
  94. 94.
    M. Hauger et al., Nucl. Instrum. Methods A 462, 382 (1994)ADSCrossRefGoogle Scholar
  95. 95.
    L.G. Levchuk, Nucl. Instrum. Methods A 345, 496 (1994)ADSCrossRefGoogle Scholar
  96. 96.
    S. Baunack, Einzelspin-Asymmetrien in der elastischen Elektron-Proton-Streuung und die Beiträge der Strange-Quarks zu den Formfaktoren des Nukleons, PhD Thesis, JGU Mainz (2006)Google Scholar
  97. 97.
    S.D. Covrig et al., Nucl. Instrum. Methods A 551, 218 (2005) arXiv:nucl-ex/0502019ADSCrossRefGoogle Scholar
  98. 98.
    S.D. Covrig, Cryotargets for PVES Experiments, invited talk, Physics beyond SM Workshop, ECT-Trento (2016)Google Scholar
  99. 99.
    GEANT4 Collaboration (S. Agostinelli et al.), Nucl. Instrum. Methods A 506, 250 (2003)ADSCrossRefGoogle Scholar
  100. 100.
    J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)ADSCrossRefGoogle Scholar
  101. 101.
    J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)ADSCrossRefGoogle Scholar
  102. 102.
    C.M. Poole, I. Cornelius, J.V. Trapp, C.M. Langton, Australas. Phys. Eng. Sci. Med 35, 329 (2012)CrossRefGoogle Scholar
  103. 103.
    FOPI Collaboration (J. Ritman), Nucl. Phys. Proc. Suppl. 44, 708 (1995)ADSCrossRefGoogle Scholar
  104. 104.
    PANDA Cherenkov Collaboration (M. Hoek), Nucl. Instrum. Methods A 639, 227 (2011)ADSCrossRefGoogle Scholar
  105. 105.
    M. Hoek et al., Nucl. Instrum. Methods A 595, 190 (2008)ADSCrossRefGoogle Scholar
  106. 106.
    QWeak Collaboration (T. Allison et al.), Nucl. Instrum. Methods A 781, 105 (2015) arXiv:1409.7100 [physics.ins-det]CrossRefGoogle Scholar
  107. 107.
    I. Peric, Nucl. Instrum. Methods A 582, 876 (2007)ADSCrossRefGoogle Scholar
  108. 108.
    I. Peric, C. Takacs, Nucl. Instrum. Methods A 624, 504 (2010)ADSCrossRefGoogle Scholar
  109. 109.
    I. Peric, C. Kreidl, P. Fischer, Nucl. Instrum. Methods A 650, 158 (2010)ADSCrossRefGoogle Scholar
  110. 110.
    I. Peric, JINST 7, C08002 (2012)CrossRefGoogle Scholar
  111. 111.
    I. Peric et al., Nucl. Instrum. Methods A 731, 131 (2013)ADSCrossRefGoogle Scholar
  112. 112.
    A. Blondel, Research Proposal for an Experiment to Search for the Decay $\mu \rightarrow eee$, arXiv:1301.6113 [physics.ins-det] (2013)Google Scholar
  113. 113.
    S. Shrestha, PoS TIPP2014, 047 (2014)Google Scholar
  114. 114.
    H. Augustin et al., JINST 10, C03044 (2015)CrossRefGoogle Scholar
  115. 115.
    H. Augustin et al., Nucl. Instrum. Methods A 845, 194 (2017) arXiv:1603.08751 [physics.ins-det]ADSCrossRefGoogle Scholar
  116. 116.
    H. Augustin, Irradiation study of a fully monolithic HV-CMOS pixel sensor design in AMS 180nm, arXiv:1712.03921 [physics.ins-det] (2017)Google Scholar
  117. 117.
    M. Müller, Effizienz eines HV-MAP Sensors auf niederenergetische Photonen, Bachelor Thesis, JGU Mainz (2017)Google Scholar
  118. 118.
    N. Berger, S. Dittmeier, L. Henkelmann, A. Herkert, F. Meier Aeschbacher, Y.W. Ng, L.O.S. Noehte, A. Schöning, D. Wiedner, JINST 11, C12006 (2016) arXiv:1610.02021 [physics.ins-det]CrossRefGoogle Scholar
  119. 119.
    M. Oinonen, ALICE Silicon Strip Detector module assembly with single-point TAB interconnections, in Proceedings, eleventh Workshop on Electronics for LHC and Future Experiments, Heidelberg, Germany, 12–16 September 2005 (CERN, 2005) p. 15Google Scholar
  120. 120.
    L. Feld, M. Fleck, M. Friedrichs, R. Hensch, W. Karpinski, K. Klein, D. Rittich, J. Sammet, M. Wlochal, Nucl. Instrum. Methods A 732, 493 (2013)ADSCrossRefGoogle Scholar
  121. 121.
    R. Schwemmer, J.P. Cachemiche, N. Neufeld, C. Soos, J. Troska, K. Wyllie, JINST 9, C03030 (2014)CrossRefGoogle Scholar
  122. 122.
    R. Martin Lesma, F. Alessio, J. Barbosa, S. Baron, C. Caplan, P. Leitao, C. Pecoraro, D. Porret, K. Wyllie, JINST 12, C02020 (2017)CrossRefGoogle Scholar
  123. 123.
    C. Soós, S. Détraz, L. Olanterä, C. Sigaud, J. Troska, F. Vasey, M. Zeiler, JINST 12, C03068 (2017)CrossRefGoogle Scholar
  124. 124.
    I. Sorokin, EPJ Web of Conferences 150, 00012 (2017)CrossRefGoogle Scholar
  125. 125.
    V. Blobel, C. Kleinwort, F. Meier, Comput. Phys. Commun. 182, 1760 (2011) arXiv:1103.3909 [physics.ins-det]ADSCrossRefGoogle Scholar
  126. 126.
    C. Kleinwort, Nucl. Instrum. Methods A 673, 107 (2012) arXiv:1201.4320 [physics.ins-det]ADSCrossRefGoogle Scholar
  127. 127.
    N. Berger, A. Buniatyan, P. Eckert, F. Förster, R. Gredig, O. Kovalenko, M. Kiehn, R. Philipp, A. Schöning, D. Wiedner, JINST 9, P07007 (2014) arXiv:1405.2759 [physics.ins-det]CrossRefADSGoogle Scholar
  128. 128.
    M. Gorchtein, C.J. Horowitz, M.J. Ramsey-Musolf, Phys. Rev. C 84, 015502 (2011) arXiv:1102.3910 [nucl-th]ADSCrossRefGoogle Scholar
  129. 129.
    J. Erler, M.J. Ramsey-Musolf, Phys. Rev. D 72, 073003 (2005) arXiv:hep-ph/0409169ADSCrossRefGoogle Scholar
  130. 130.
    J. Erler, R. Ferro-Hernández, Weak Mixing Angle in the Thomson Limit, arXiv:1712.09146 [hep-ph] (2017)Google Scholar
  131. 131.
    A. Czarnecki, W.J. Marciano, Int. J. Mod. Phys. A 15, 2365 (2000) arXiv:hep-ph/0003049ADSGoogle Scholar
  132. 132.
    W.J. Marciano, A. Sirlin, Phys. Rev. D 27, 552 (1983)ADSCrossRefGoogle Scholar
  133. 133.
    W.J. Marciano, A. Sirlin, Phys. Rev. D 29, 75 (1984) 31ADSCrossRefGoogle Scholar
  134. 134.
    M.J. Musolf, B.R. Holstein, Phys. Lett. B 242, 461 (1990)ADSCrossRefGoogle Scholar
  135. 135.
    M. Gorchtein, C.J. Horowitz, Phys. Rev. Lett. 102, 091806 (2009) arXiv:0811.0614 [hep-ph]ADSCrossRefGoogle Scholar
  136. 136.
    A. Sibirtsev, P.G. Blunden, W. Melnitchouk, A.W. Thomas, Phys. Rev. D 82, 013011 (2010) arXiv:1002.0740 [hep-ph]ADSCrossRefGoogle Scholar
  137. 137.
    B.C. Rislow, C.E. Carlson, Phys. Rev. D 83, 113007 (2011) arXiv:1011.2397 [hep-ph]ADSCrossRefGoogle Scholar
  138. 138.
    P.G. Blunden, W. Melnitchouk, A.W. Thomas, Phys. Rev. Lett. 107, 081801 (2011) arXiv:1102.5334 [hep-ph]ADSCrossRefGoogle Scholar
  139. 139.
    N.L. Hall, P.G. Blunden, W. Melnitchouk, A.W. Thomas, R.D. Young, Phys. Lett. B 753, 221 (2016) arXiv:1504.03973 [nucl-th]ADSCrossRefGoogle Scholar
  140. 140.
    H.Q. Zhou, C.W. Kao, S.N. Yang, K. Nagata, Phys. Rev. C 81, 035208 (2010) arXiv:0910.3307 [nucl-th]ADSCrossRefGoogle Scholar
  141. 141.
    M. Gorchtein, H. Spiesberger, Phys. Rev. C 94, 055502 (2016) arXiv:1608.07484 [nucl-th]ADSCrossRefGoogle Scholar
  142. 142.
    M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)ADSCrossRefGoogle Scholar
  143. 143.
    M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992)ADSCrossRefGoogle Scholar
  144. 144.
    C.P. Burgess, S. Godfrey, H. Konig, D. London, I. Maksymyk, Phys. Lett. B 326, 276 (1994) arXiv:hep-ph/9307337ADSCrossRefGoogle Scholar
  145. 145.
    X. Roca-Maza, M. Centelles, X. Vinas, M. Warda, Phys. Rev. Lett. 106, 252501 (2011) arXiv:1103.1762 [nucl-th]ADSCrossRefGoogle Scholar
  146. 146.
    Virgo, LIGO Scientific Collaborations (B.P. Abbott et al.), Phys. Rev. Lett. 119, 161101 (2017) arXiv:1710.05832 [gr-qc]ADSCrossRefGoogle Scholar
  147. 147.
    A. Carbone, G. Colo, A. Bracco, L.-G. Cao, P.F. Bortignon, F. Camera, O. Wieland, Phys. Rev. C 81, 041301 (2010) arXiv:1003.3580 [nucl-th]ADSCrossRefGoogle Scholar
  148. 148.
    A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011) arXiv:1104.5431 [nucl-ex]ADSCrossRefGoogle Scholar
  149. 149.
    C.M. Tarbert et al., Phys. Rev. Lett. 112, 242502 (2014) arXiv:1311.0168 [nucl-ex]ADSCrossRefGoogle Scholar
  150. 150.
    J. Zenihiro et al., Phys. Rev. C 82, 044611 (2010)ADSCrossRefGoogle Scholar
  151. 151.
    B. Klos et al., Phys. Rev. C 76, 014311 (2007) arXiv:nucl-ex/0702016ADSCrossRefGoogle Scholar
  152. 152.
    C. Garcia-Recio, J. Nieves, E. Oset, Nucl. Phys. A 547, 473 (1992)ADSCrossRefGoogle Scholar
  153. 153.
    C.J. Horowitz, S.J. Pollock, P.A. Souder, R. Michaels, Phys. Rev. C 63, 025501 (2001) arXiv:nucl-th/9912038ADSCrossRefGoogle Scholar
  154. 154.
    C.J. Horowitz, K.S. Kumar, R. Michaels, Eur. Phys. J. A 50, 48 (2014) arXiv:1307.3572 [nucl-ex]ADSCrossRefGoogle Scholar
  155. 155.
    C.J. Horowitz, Z. Lin, private communication (2015)Google Scholar
  156. 156.
    F.J. Fattoyev, J. Piekarewicz, C.J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018) arXiv:1711.06615 [nucl-th]ADSCrossRefGoogle Scholar
  157. 157.
    P.A. Souder, PREX-II: Precision parity-violating measurement of the neutron skin of lead, https://doi.org/hallaweb.jlab.org/parity/prex/prexII.pdf, proposal to Jefferson Lab PAC 38
  158. 158.
    S.-L. Zhu, S. Puglia, B.R. Holstein, M.J. Ramsey-Musolf, Phys. Rev. C 64, 035502 (2001) arXiv:hep-ph/0012253ADSCrossRefGoogle Scholar
  159. 159.
    J. Liu, R.D. McKeown, M.J. Ramsey-Musolf, Phys. Rev. C 76, 025202 (2007) arXiv:0706.0226 [nucl-ex]ADSCrossRefGoogle Scholar
  160. 160.
    R. González-Jiménez, J.A. Caballero, T.W. Donnelly, Phys. Rev. D 90, 033002 (2014) arXiv:1403.5119 [nucl-th]ADSCrossRefGoogle Scholar
  161. 161.
    O. Moreno, T.W. Donnelly, R. González-Jiménez, J.A. Caballero, J. Phys. G 42, 034006 (2015) arXiv:1408.3511 [nucl-th]ADSCrossRefGoogle Scholar
  162. 162.
    S. Gardner, W.C. Haxton, B.R. Holstein, Annu. Rev. Nucl. Part. Sci. 67, 69 (2017) arXiv:1704.02617 [nucl-th]ADSCrossRefGoogle Scholar
  163. 163.
    J. de Vries, U.-G. Meißner, Int. J. Mod. Phys. E 25, 1641008 (2016) arXiv:1509.07331 [hep-ph]ADSCrossRefGoogle Scholar
  164. 164.
    Jiunn-Wei Chen, Xiang-Dong Ji, Phys. Lett. B 501, 209 (2001) arXiv:nucl-th/0011100CrossRefGoogle Scholar
  165. 165.
    Jiunn-Wei Chen, Xiang-Dong Ji, Phys. Rev. Lett. 86, 4239 (2001) arXiv:hep-ph/0011230ADSCrossRefGoogle Scholar
  166. 166.
    B. Pasquini, M. Vanderhaeghen, Phys. Rev. C 70, 045206 (2004) arXiv:hep-ph/0405303ADSCrossRefGoogle Scholar
  167. 167.
    Qweak Collaboration (D. Androić et al.), Nature 557, 207 (2018)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dominik Becker
    • 1
    • 2
  • Razvan Bucoveanu
    • 1
    • 3
  • Carsten Grzesik
    • 1
    • 2
  • Kathrin Imai
    • 1
    • 2
  • Ruth Kempf
    • 1
    • 2
  • Matthias Molitor
    • 1
    • 2
  • Alexey Tyukin
    • 1
    • 2
  • Marco Zimmermann
    • 1
    • 2
  • David Armstrong
    • 4
  • Kurt Aulenbacher
    • 1
    • 2
    • 5
  • Sebastian Baunack
    • 1
    • 2
  • Rakitha Beminiwattha
    • 6
  • Niklaus Berger
    • 1
    • 2
  • Peter Bernhard
    • 1
    • 7
  • Andrea Brogna
    • 1
    • 7
  • Luigi Capozza
    • 1
    • 2
    • 5
  • Silviu Covrig Dusa
    • 8
  • Wouter Deconinck
    • 4
  • Jürgen Diefenbach
    • 1
    • 2
  • James Dunne
    • 9
  • Jens Erler
    • 10
  • Ciprian Gal
    • 11
  • Michael Gericke
    • 12
  • Boris Gläser
    • 1
    • 2
  • Mikhail Gorchtein
    • 1
    • 2
  • Boxing Gou
    • 1
    • 2
    • 5
  • Wolfgang Gradl
    • 1
    • 2
  • Yoshio Imai
    • 1
    • 2
  • Krishna S. Kumar
    • 13
  • Frank Maas
    • 1
    • 2
    • 5
  • Juliette Mammei
    • 12
  • Jie Pan
    • 12
  • Preeti Pandey
    • 12
  • Kent Paschke
    • 11
  • Ivan Perić
    • 14
  • Mark Pitt
    • 15
  • Sakib Rahman
    • 12
  • Seamus Riordan
    • 16
  • David Rodríguez Piñeiro
    • 1
    • 2
    • 5
  • Concettina Sfienti
    • 1
    • 2
    • 5
    • 7
  • Iurii Sorokin
    • 1
    • 2
  • Paul Souder
    • 17
  • Hubert Spiesberger
    • 1
    • 3
  • Michaela Thiel
    • 1
    • 2
  • Valery Tyukin
    • 1
    • 2
  • Quirin Weitzel
    • 1
    • 7
  1. 1.PRISMA Cluster of ExcellenceJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Institute of Nuclear PhysicsJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Institute of PhysicsJohannes Gutenberg-Universität MainzMainzGermany
  4. 4.College of William and MaryWilliamsburgUSA
  5. 5.Helmholtz Institute MainzJohannes Gutenberg-Universität MainzMainzGermany
  6. 6.Louisiana Tech UniversityRustonUSA
  7. 7.Detector Laboratory, PRISMA Cluster of ExcellenceJohannes Gutenberg-Universität MainzMainzGermany
  8. 8.Thomas Jefferson National Accelerator FacilityNewport NewsUSA
  9. 9.Mississippi State UniversityMississippi StateUSA
  10. 10.Departamento de Física Teórica, Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  11. 11.University of VirginiaCharlottesvilleUSA
  12. 12.Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
  13. 13.Department of Physics and AstronomyStony Brook UniversityStony BrookUSA
  14. 14.Institute for Data Processing and ElectronicsKarlsruhe Institute of TechnologyKarlsruheGermany
  15. 15.Virginia Tech UniversityBlacksburgUSA
  16. 16.Physics DivisionArgonne National LaboratoryArgonneUSA
  17. 17.Physics DepartmentSyracuse UniversitySyracuseUSA

Personalised recommendations