Advertisement

On the self-calibration capabilities of \( \gamma\) -ray energy tracking arrays

  • S. Heil
  • S. Paschalis
  • M. Petri
Open Access
Special Article - New Tools and Techniques
  • 14 Downloads

Abstract.

Gamma-ray energy tracking arrays constitute the technological frontier of high-resolution \( \gamma\) -ray spectroscopy revolutionizing modern nuclear physics investigations. Their principle of operation lies on the precise reconstruction of the three-dimensional \( \gamma\) -ray interaction positions within the detector volume. The most common method to obtain these interaction points in real time is to compare the experimental signals against a reliable library of signals (signal basis) that maps the detector response as a function of the \( \gamma\) -ray interaction position. Obtaining a high-fidelity signal basis, however, remains a big technological challenge, which hinders the optimal operation of these state-of-the-art arrays. In this article, we propose a pioneering and notably simple method for generating experimentally a reliable signal basis. The proposed method enables the \( \gamma\) -ray tracking devices to perform a self-calibration of their position sensitive response in situ, opening up the way for reaching their optimum performance for the first time.

References

  1. 1.
    S. Paschalis et al., Nucl. Instrum. Methods A 709, 44 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    N. Goel et al., Nucl. Instrum. Methods A 652, 591 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    N. Goel et al., Nucl. Instrum. Methods A 700, 10 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    C. Domingo-Pardo et al., Nucl. Instrum. Methods A 643, 79 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    F.C.L. Crespi et al., Nucl. Instrum. Methods A 593, 440 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Deleplanque et al., Nucl. Instrum. Methods A 430, 292 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    F.C.L. Crespi et al., Nucl. Instrum. Methods A 705, 47 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    P.-A. Söderström et al., Nucl. Instrum. Methods A 638, 96 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    T.J. Ross et al., Nucl. Instrum. Methods A 606, 533 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Descovich et al., Nucl. Instrum. Methods A 545, 199 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    I.Y. Lee, M.A. Deleplanque, K. Vetter, Rep. Prog. Phys. 66, 7 (2003)CrossRefGoogle Scholar
  13. 13.
    J. Eberth, J. Simpson, Prog. Part. Nucl. Phys. 60, 283 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    John Anderson et al., IEEE Trans. Nucl. Sci. 56, 258 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    I.Y. Lee et al., Nucl. Phys. A 746, 1 (2004)Google Scholar
  16. 16.
    I.Y. Lee, AIP Conf. Proc. 1139, 23 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Sergio Zimmermann et al., IEEE Trans. Nucl. Sci. 59, 2494 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    M. Descovich et al., Nucl. Instrum. Methods A 241, 931 (2005)CrossRefGoogle Scholar
  19. 19.
    M. Cromaz et al., Nucl. Instrum. Methods A 597, 233 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Sergio Zimmermann, Dionisio Doering, in IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2010) p. 2794Google Scholar
  21. 21.
    A.J. Boston et al., Nucl. Instrum. Methods B 261, 1098 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    P. Desesquelles et al., Nucl. Instrum. Methods A 729, 198 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    K. Vetter et al., Nucl. Instrum. Methods A 452, 105 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    K. Vetter et al., Nucl. Instrum. Methods A 452, 223 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    D. Weisshaar et al., Nucl. Instrum. Methods A 847, 187 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Paul Fallon, Alexandra Gade, I-Yang Lee, Annu. Rev. Nucl. Part. Sci. 66, 321 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    A. Mutschler et al., Nat. Phys. 13, 152 (2016)CrossRefGoogle Scholar
  28. 28.
    Philip Walker, Nat. Phys. 10, 338 (2014)CrossRefGoogle Scholar
  29. 29.
    L. Pellegri et al., Phys. Lett. B 738, 519 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    F.C.L. Crespi et al., Phys. Rev. Lett. 113, 012501 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    S. Ceruti et al., Phys. Rev. Lett. 115, 222502 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    K. Hadyń, Phys. Rev. Lett. 117, 062501 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    A. Gade et al., Phys. Rev. Lett. 112, 112503 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    H. Iwasaki et al., Phys. Rev. Lett. 112, 142502 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    S. Noji et al., Phys. Rev. Lett. 112, 252501 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    C. Langer et al., Phys. Rev. Lett. 113, 032502 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    K. Kolos et al., Phys. Rev. Lett. 116, 122502 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    A.D. Ayangeakaa et al., Phys. Lett. B 754, 254 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    B. Bucher et al., Phys. Rev. Lett. 116, 112503 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    G.J. Schmid et al., Nucl. Instrum. Methods A 430, 69 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    L. Nelson et al., Nucl. Instrum. Methods A 573, 153 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    M.R. Dimmock et al., IEEE Trans. Nucl. Sci. 56, 1593 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    A.J. Boston et al., Nucl. Instrum. Methods A 604, 48 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    T.M.H. Ha et al., Nucl. Instrum. Methods A 697, 123 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    B. Bruyneel, B. Birkenbach, P. Reiter, Eur. Phys. J. A 52, 70 (2016)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of PhysicsUniversity of YorkYorkUK

Personalised recommendations