Advertisement

Calculation of fission product yields for uranium isotopes by using a semi-empirical model

  • Jounghwa Lee
  • Choong-Sup Gil
  • Young-Ouk Lee
  • Tae-Sun Park
  • Seung-Woo Hong
Regular Article - Theoretical Physics
  • 7 Downloads

Abstract.

A semi-empirical model for calculating the fission product yields (FPY) of neutron induced fissions of uranium isotopes is developed, where the FPY are assumed to be proportional to the level density of a microcanonical ensemble of a compound nucleus at the fission barrier. The fission height that determines the level density is modeled as a sum of two parts; a symmetric part and an asymmetric part. The origin of the symmetric part can be attributed to the liquid drop model, and that of the asymmetric part to the shell effect in the fission products. Our model has essentially just seven adjustable parameters. They are fitted to the ENDF/B-VII.1 fission yield data of various uranium isotopes for the mass number ranging from 232 to 238 induced by thermal and fast (500 keV) neutrons. Five of the resulting parameters are nearly independent of the mass number of the uranium isotopes. Two parameters which change with the mass number of the uranium isotopes can be expressed as a linear function of the mass number. The FPY calculated from our model are found to be in a good agreement with both the ENDF and experimental data.

References

  1. 1.
    J. Katakura, JENDL FP decay data file 2011 and fission yields data file 2011, JAEA-Data/Code 2011-025, (Japan Atomic Energy Agency, 2011)Google Scholar
  2. 2.
    N. Schunck, D. Duke, H. Carr, A. Knoll, Phys. Rev. C 90, 054305 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    D. Regnier, N. Dubray, N. Schunck, M. Verrière, Phys. Rev. C 93, 054611 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Aritomo, S. Chiba, Phys. Rev. C 88, 044614 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    J. Randrup, P. Möller, A.J. Sierk, Phys. Rev. C 84, 034613 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    K.-H. Schmidt, B. Jurado, General view on the progress in nuclear fission: a review, HAL: in2p3-01314814 (2016)Google Scholar
  7. 7.
    H.J. Krappe, K. Pomorski, Theory of Nuclear Fission, Lect. Notes Phys., Vol. 838 (Springer, Berlin, 2012)Google Scholar
  8. 8.
    N. Schunck, L.M. Robledo, Rep. Prog. Phys. 79, 116301 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    A.R. de L. Musgrove, J.L. Cock, G.D. Trimble, Prediction of unmeasured fission product yields, IAEA-169, Vol. 2 (International Atomic Energy Agency, 1974) pp. 163--200Google Scholar
  10. 10.
    J. Benlliure, A. Grewe, M. de Jong, K.-H. Schmidt, S. Zhdanov, Nucl. Phys. A 628, 458 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    S.I. Mulgin, K.-H. Schmidt, A. Grewe, S.V. Zhdanov, Nucl. Phys. A 640, 375 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)ADSCrossRefGoogle Scholar
  13. 13.
    M. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A.J. Koning, S. Hilaire, S. Goriely, TALYS-1.9: a nuclear reaction program (Nuclear Research and Consultancy Group (NRG) Petten, The Netherlands, 2017) https://doi.org/www.talys.eu
  15. 15.
    K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    K.-H. Schmidt, B. Jurado, Phys. Proc. 31, 147 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012)CrossRefGoogle Scholar
  19. 19.
    M.G. Itkis, V.N. Okolovich, A.Ya. Rusanov, G.N. Smirenkin, Z. Phys. A 320, 433 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    K.-H. Schmidt, A. Kelić, M.V. Ricciardi, EPL 83, 32001 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    T.R. England, B.F. Rider, Evaluation and compilation of fission product yields, LA-UR-94-3106, Los Alamos National Laboratory (1993)Google Scholar
  22. 22.
    A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975)Google Scholar
  23. 23.
    A.C. Wahl, R.L. Ferguson, D.R. Nethaway, D.E. Troutner, K. Wolfsberg, Phys. Rev. 126, 1112 (1962)ADSCrossRefGoogle Scholar
  24. 24.
    U. Brosa, S. Grossmann, A. Müller, Phys. Rep. 197, 167 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    T. von Egidy, D. Bucurescu, Phys. Rev. C 72, 044311 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    A.S. Iljinov, M.V. Mebel, N. Bianchi, E. De Sanctis, C. Guaraldo, V. Lucherini, V. Muccifora, E. Polli, A.R. Reolon, P. Rossi, Nucl. Phys. A 543, 517 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)CrossRefGoogle Scholar
  28. 28.
    R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic Press, New York, 1973)Google Scholar
  29. 29.
    M. Asghar, P. D’Hondt, C. Guet, P. Perrin, C. Wagemans, Nucl. Phys. A 292, 225 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    A. Bail, PhD Thesis, University of Bordeaux (2009)Google Scholar
  31. 31.
    G. Diiorio, B.W. Wehring, Nucl. Instrum. Methods 147, 487 (1977)ADSCrossRefGoogle Scholar
  32. 32.
    H. Farrar, R.H. Tomlinson, Nucl. Phys. 34, 367 (1962)CrossRefGoogle Scholar
  33. 33.
    C.A. Fontenla, D.P. Fontenla, Phys. Rev. Lett. 44, 1200 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    H. Thierens, D. de Frenne, E. Jacobs, A. de Clercq, P. D’Hondt, A.J. Deruytter, Nucl. Instum. Methods 134, 299 (1976)ADSCrossRefGoogle Scholar
  35. 35.
    C. Wagemans, E. Allaert, F. Caitucoli, P. D’Hondt, G. Barreau, P. Perrin, Nucl. Phys. A 369, 1 (1981)ADSCrossRefGoogle Scholar
  36. 36.
    H. Wohlfarth, PhD Thesis, Technische Hochschule Darmstadt (1977)Google Scholar
  37. 37.
    P.P. Dyachenko, B.D. Kuzminov, A. Lajtai, The kinetic energy of fragments in the fission of ${}^{235}$U by neutrons with energies from 0 to 0.6 MeV, INDC(CCP)-008 (International Atomic Energy Agency, 1970)Google Scholar
  38. 38.
    H. Baba, T. Saito, N. Takahashi, A. Yokoyama, T. Miyauchi, S. Mori, D. Yano, T. Hakoda, K. Takamiya, K. Nakanishi, Y. Nakagome, J. Nucl. Sci. Technol. 34, 871 (1997)CrossRefGoogle Scholar
  39. 39.
    U. Quade, K. Rudolph, S. Skorka, P. Armbruster, H.-G. Clerc, W. Lang, M. Mutterer, C. Schmitt, J.P. Theobald, F. Gönnenwein, J. Pannicke, H. Schrader, G. Siegert, D. Engelhardt, Nucl. Phys. A 487, 1 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    B.W. Wehring, S. Lee, G. Swift, Light fragment independent yields for thermal neutron fission of U-233, UILU-ENG-80-5312, University of Illinois, Urbana (1980)Google Scholar
  41. 41.
    D.R. Bidinosti, D.E. Irish, R.H. Tomlinson, Can. J. Chem. 39, 628 (1961)CrossRefGoogle Scholar
  42. 42.
    W.J. Maeck, in Conference on Nuclear Cross Sections and Technology, Washington, USA, Vol. 1 (U.S. Department of Commerce, National Bureau of Standards, 1975) p. 378Google Scholar
  43. 43.
    L. Koch, Radiochim. Acta 29, 61 (1981)CrossRefGoogle Scholar
  44. 44.
    M. Haddad, J. Crançon, G. Lhospice, M. Asghar, Radiochim. Acta 46, 23 (1989)Google Scholar
  45. 45.
    A.Ya. Rusanov, M.G. Itkis, V.N. Okolovich, Phys. At. Nucl. 60, 683 (1997)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jounghwa Lee
    • 1
    • 2
  • Choong-Sup Gil
    • 1
  • Young-Ouk Lee
    • 1
  • Tae-Sun Park
    • 2
  • Seung-Woo Hong
    • 2
  1. 1.Nuclear Data CenterKorea Atomic Energy Research InstituteDaejeonKorea
  2. 2.Department of PhysicsSungkyunkwan UniversitySuwonKorea

Personalised recommendations