Advertisement

Energy dependent kinetic freeze-out temperature and transverse flow velocity in high energy collisions

  • Li-Li Li
  • Fu-Hu Liu
Regular Article - Theoretical Physics

Abstract.

Transverse momentum spectra of negative and positive pions produced at mid-(pseudo)rapidity in inelastic or non-single-diffractive proton-proton collisions and in central nucleus-nucleus collisions over an energy range from a few GeV to above 10TeV are analyzed by a (two-component) blast-wave model with Boltzmann-Gibbs statistics and with Tsallis statistics, respectively. The model results are in similarly good agreement with the experimental data measured by a few productive collaborations who work at the Heavy Ion Synchrotron (SIS), Super Proton Synchrotron (SPS), Relativistic Heavy Ion Collider (RHIC), and Large Hadron Collider (LHC), respectively. The energy dependent kinetic freeze-out temperature and transverse flow velocity are obtained and analyzed. Both the quantities have a quick increase from the SIS to SPS, and slight increase or approximate invariability from the top RHIC to LHC. Around the energy bridge from the SPS to RHIC, the considered quantities in proton-proton collisions obtained by the blast-wave model with Boltzmann-Gibbs statistics show a more complex energy dependent behavior compared with the results in the other three cases.

References

  1. 1.
    A. Puglisi, A. Sarracino, A. Vulpiani, Phys. Rep. 709, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48, 2462 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 81, 024911 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Z.B. Tang, Y.C. Xu, L.J. Ruan, G. van Buren, F.Q. Wang, Z.B. Xu, Phys. Rev. C 79, 051901(R) (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Z.B. Tang, L. Yi, L.J. Ruan, M. Shao, H.F. Chen, C. Li, B. Mohanty, P. Sorensen, A.H. Tang, Z.B. Xu, Chin. Phys. Lett. 30, 031201 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    K. Jiang, Y.Y. Zhu, W.T. Liu, H.F. Chen, C. Li, L.J. Ruan, Z.B. Tang, Z.B. Xu, Phys. Rev. C 91, 024910 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    H. Heiselberg, A.M. Levy, Phys. Rev. C 59, 2716 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    S. Takeuchi, K. Murase, T. Hirano, P. Huovinen, Y. Nara, Phys. Rev. C 92, 044907 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    H.-R. Wei, F.-H. Liu, R.A. Lacey, Eur. Phys. J. A 52, 102 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    H.-R. Wei, F.-H. Liu, R.A. Lacey, J. Phys. G 43, 125102 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    H.-L. Lao, H.-R. Wei, F.-H. Liu, R.A. Lacey, Eur. Phys. J. A 52, 203 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    A. Andronic, Int. J. Mod. Phys. A 29, 1430047 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 109, 252301 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    S. Zhang, Y.G. Ma, J.H. Chen, C. Zhong, Adv. High Energy Phys. 2015, 460590 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Das for the STAR Collaboration, EPJ Web of Conferences 90, 08007 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Das for the STAR Collaboration, Nucl. Phys. A 904--905, 891c (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S. Zhang, Y.G. Ma, J.H. Chen, C. Zhong, Adv. High Energy Phys. 2016, 9414239 (2016)Google Scholar
  18. 18.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 96, 044904 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    X.F. Luo, Nucl. Phys. A 956, 75 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    S. Chatterjee, S. Das, L. Kumar, D. Mishra, B. Mohanty, R. Sahoo, N. Sharma, Adv. High Energy Phys. 2015, 349013 (2015)CrossRefGoogle Scholar
  21. 21.
    H.-L. Lao, F.-H. Liu, B.-C. Li, M.-Y. Duan, Nucl. Sci. Tech. 29, 82 (2018)CrossRefGoogle Scholar
  22. 22.
    FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 781, 459 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    NA61/SHINE Collaboration (N. Abgrall et al.), Eur. Phys. J. C 74, 2794 (2014)CrossRefGoogle Scholar
  24. 24.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 83, 064903 (2011)CrossRefGoogle Scholar
  25. 25.
    J.T. Mitchell for the PHENIX Collaboration, PoS CPOD2006, 019 (2006) arXiv:nucl-ex/0701079Google Scholar
  26. 26.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 034909 (2009)CrossRefGoogle Scholar
  27. 27.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 96, 044904 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 81, 024911 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    ALICE Collaboration (K. Aamodt et al.), Eur. Phys. J. C 71, 1655 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 109, 252301 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    CMS Collaboration (S. Chatrchyan et al.), Eur. Phys. J. C 72, 2164 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    CMS Collaboration (A.M. Sirunyan et al.), Phys. Rev. D 96, 112003 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    R. Odorico, Phys. Lett. B 118, 151 (1982)ADSCrossRefGoogle Scholar
  34. 34.
    UA1 Collaboration (G. Arnison et al.), Phys. Lett. B 118, 167 (1982)CrossRefGoogle Scholar
  35. 35.
    T. Mizoguchi, M. Biyajima, N. Suzuki, Int. J. Mod. Phys. A 32, 1750057 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    R. Hagedorn, Riv. Nuovo Cimento 6, 1 (1983)MathSciNetCrossRefGoogle Scholar
  37. 37.
    ALICE Collaboration (B. Abelev et al.), Eur. Phys. J. C 75, 1 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    ALICE Collaboration (K. Aamodt et al.), Phys. Lett. B 693, 53 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    A. De Falco for the ALICE Collaboration, J. Phys. G 38, 124083 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 710, 557 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    HERA-B Collaboration (I. Abt et al.), Eur. Phys. J. C 50, 315 (2007)CrossRefGoogle Scholar
  42. 42.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 718, 295 (2012) 748ADSCrossRefGoogle Scholar
  43. 43.
    I. Lakomov for the ALICE Collaboration, Nucl. Phys. A 931, 1179 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 708, 265 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    J. Cleymans, arXiv:1711.02882 [hep-ph] (2017)Google Scholar
  46. 46.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  47. 47.
    K. Okamoto, C. Nonaka, Eur. Phys. J. C 77, 383 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    L.-L. Li, F.-H. Liu, arXiv:1805.03342 [hep-ph] (2018)Google Scholar
  49. 49.
    H.C. Song, Y. Zhou, K. Gajdošová, Nucl. Sci. Tech. 28, 99 (2017)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and State Key Laboratory of Quantum Optics and Quantum Optics DevicesShanxi UniversityTaiyuanChina

Personalised recommendations