Advertisement

Incorporating self-consistent single-particle potentials into the microscopic-macroscopic method

  • G. G. Adamian
  • L. A. Malov
  • N. V. Antonenko
  • H. Lenske
  • Kun Wang
  • Shan-Gui Zhou
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract.

Effective single-particle potentials obtained by self-consistent HFB calculations from the established non-relativistic and relativistic nuclear EDF approaches are incorporated into the microscopic-macroscopic method, a widely and successfully used approach for superheavy nuclei. We determine the Schrödinger-equivalent central and spin-orbit potentials incorporating effective mass effects. The method can be applied to non-relativistic and relativistic mean-fields. A parametrization in terms of the Wood-Saxon form is introduced to derive the proton and neutron potentials, appropriate for the microscopic-macroscopic method. As the first application, the extended microscopic-macroscopic approach is used to calculate the shell corrections in the heaviest nuclei. Constraints on parameters sets for central and spin-orbit potentials are derived for which the shell effects are amplified towards \( Z=120\) .

References

  1. 1.
    V.M. Strutinsky, Sov. J. Nucl. Phys. 3, 449 (1966) Nucl. Phys. A 95Google Scholar
  2. 2.
    S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, I.-L. Lamm, P. Möller, B. Nilsson, Nucl. Phys. A 131, 1 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    V.A. Chepurnov, Yad. Fiz. 6, 955 (1967)Google Scholar
  4. 4.
    A. Bohr, B. Mottelson, Nuclear Structure, Vols. I, II (Benjamin, NY, 1975)Google Scholar
  5. 5.
    V.G. Soloviev, Theory of Complex Nuclei (Pergamon Press, Oxford, 1976)Google Scholar
  6. 6.
    S.P. Ivanova, A.L. Komov, L.A. Malov, V.G. Soloviev, Phys. Part. Nucl. 7, 450 (1976)Google Scholar
  7. 7.
    V.G. Soloviev, A.V. Sushkov, N.Yu. Shirikova, Phys. Part. Nucl. 25, 157 (1994)Google Scholar
  8. 8.
    V.G. Soloviev, A.V. Sushkov, N.Yu. Shirikova, Phys. Part. Nucl. 27, 667 (1996)Google Scholar
  9. 9.
    J. Maruhn, W. Greiner, Z. Phys. A 251, 431 (1972)CrossRefGoogle Scholar
  10. 10.
    P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    J. Dudek, Z. Szymanski, T. Werner, A. Fäßler, C. Lima, Phys. Rev. C 26, 1712 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    I. Muntian, Z. Patyk, A. Sobiczewski, Acta. Phys. Pol. B 32, 691 (2001)ADSGoogle Scholar
  13. 13.
    I. Muntian, Z. Patyk, A. Sobiczewski, Acta. Phys. Pol. B 34, 2141 (2003)ADSGoogle Scholar
  14. 14.
    I. Muntian, S. Hofmann, Z. Patyk, A. Sobiczewski, Acta. Phys. Pol. B 34, 2073 (2003)ADSGoogle Scholar
  15. 15.
    I. Muntian, S. Hofmann, Z. Patyk, A. Sobiczewski, Phys. At. Nucl. 66, 1015 (2003)CrossRefGoogle Scholar
  16. 16.
    A. Parkhomenko, I. Muntian, Z. Patyk, A. Sobiczewski, Acta. Phys. Pol. B 34, 2153 (2003)ADSGoogle Scholar
  17. 17.
    A. Parkhomenko, A. Sobiczewski, Acta. Phys. Pol. B 36, 3095 (2005)ADSGoogle Scholar
  18. 18.
    I. Ahmad, Phys. Scr. T 125, 78 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    I. Ahmad, R.R. Chasman, Phys. Rev. C 80, 064315 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    N. Schwierz, I. Wiedenhöver, A. Volya, arXiv:nucl-th/07093525 (2007)Google Scholar
  21. 21.
    N. Wang, M. Liu, X. Wu, J. Meng, Phys. Lett. B 734, 215 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    V.V. Pashkevich, A.Ya. Rusanov, Nucl. Phys. A 810, 77 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Z.-Y. Wu, C. Qi, R. Wyss, H.-L. Liu, Phys. Rev. C 92, 024306 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    F.R. Xu, P.M. Walker, R. Wyss, Phys. Rev. C 59, 731 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    G.G. Adamian, L.A. Malov, N.V. Antonenko, R.V. Jolos, Phys. Rev. C 97, 034308 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    A. Sobiczewski, K. Pomorski, Prog. Part. Nucl. Phys. 58, 292 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    M. Asai, F.P. Heßberger, A. Lopez-Martens, Nucl. Phys. A 944, 308 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Ch. Theisen, P.T. Greenlees, T.-L. Khoo, P. Chowdhury, T. Ishii, Nucl. Phys. A 944, 333 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    D. Ackermann, Ch. Theisen, Phys. Scr. 92, 083002 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)ADSCrossRefGoogle Scholar
  31. 31.
    J. Boguta, A.R. Bodmer, Nucl. Phys. 292, 413 (1977)CrossRefGoogle Scholar
  32. 32.
    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    F. Hofmann, H. Lenske, Phys. Rev. C 57, 2281 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    H. Lenske, C. Fuchs, Phys. Lett. B 345, 355 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    S.A. Fayans, S.V. Tolokonnikov, E.L. Trykov, D. Zawischa, Nucl. Phys. A 676, 49 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    S.V. Tolokonnikov, E.E. Saperstein, Phys. At. Nucl. 73, 1684 (2010)CrossRefGoogle Scholar
  38. 38.
    M. Baldo, P. Schuck, X. Viňas, Phys. Lett. B 663, 390 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    M. Baldo, L.M. Robledo, P. Schuck, X. Viňas, Phys. Rev. C 87, 064305 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    G.A. Lalazissis, D. Vretenar, P. Ring, Phys. Rev. C 57, 2294 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    S.-G. Zhou, J. Meng, P. Ring, Phys. Rev. C 68, 034323 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    J. Meng, H. Toki, S.-G. Zhou, S.-Q. Zhang, W.-H. Long, L.-S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    J.J. Li, W.H. Long, J. Margueron, N. Van Giai, Phys. Lett. B 732, 169 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    H. Liang, J. Meng, S.-G. Zhou, Phys. Rep. 570, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    J. Meng, S.-G. Zhou, J. Phys. G 42, 093101 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    S.-G. Zhou, Phys. Scr. 91, 063008 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 81, 024320 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    G.G. Adamian, N.V. Antonenko, S.N. Kuklin, W. Scheid, Phys. Rev. C 82, 054304 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    G.G. Adamian, N.V. Antonenko, S.N. Kuklin, B.N. Lu, L.A. Malov, S.G. Zhou, Phys. Rev. C 84, 024324 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 85, 014319 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)ADSCrossRefGoogle Scholar
  53. 53.
    J.W. Negele, D. Vautherin, Phys. Rev. C 5, 1472 (1972)ADSCrossRefGoogle Scholar
  54. 54.
    J.W. Negele, D. Vautherin, Phys. Rev. C 11, 1031 (1975)ADSCrossRefGoogle Scholar
  55. 55.
    N. Tsoneva, H. Lenske, Phys. Rev. C 77, 024321 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    G.A. Lalazissis, J. Konig, P. Ring, Phys. Rev. C 55, 540 (1997)ADSCrossRefGoogle Scholar
  57. 57.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, A. Arima, Phys. Rev. C 59, 154 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    S.-G. Zhou, J. Meng, P. Ring, Phys. Rev. Lett. 91, 262501 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    W. Koepf, P. Ring, Z. Phys. A 339, 81 (1991)ADSCrossRefGoogle Scholar
  60. 60.
    A. Baran, Phys. Rev. C 61, 024316 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    M. Jaminon, C. Mahaux, Phys. Rev. C 40, 354 (1989)ADSCrossRefGoogle Scholar
  62. 62.
    Z.-Y. Ma, J. Rong, B.-Q. Chen, Z.-Y. Zhu, H.-Q. Song, Phys. Lett. B 604, 170 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    W.-H. Long, N. Van Giai, J. Meng, Phys. Lett. B 640, 150 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    V. Derya, N. Tsoneva, T. Aumann, M. Bhike, J. Endres, M. Gooden, A. Hennig, J. Isaak, H. Lenske, B. Loher, N. Pietralla, D. Savran, W. Tornow, V. Werner, A. Zilges, Phys. Rev. C 93, 034311 (2016)ADSCrossRefGoogle Scholar
  65. 65.
    A.P. Tonchev, S.L. Hammond, J.H. Kelley, E. Kwan, H. Lenske, G. Rusev, W. Tornow, N. Tsoneva, Phys. Rev. Lett. 104, 072501 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    G.G. Adamian, N.V. Antonenko, H. Lenske, S.V. Tolokonnikov, E.E. Saperstein, Phys. Rev. C 94, 054309 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    J. Dechargé, J.-F. Berger, M. Girod, K. Dietrich, Nucl. Phys. A 716, 55 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 60, 034304 (1999)ADSCrossRefGoogle Scholar
  69. 69.
    A.V. Afanasjev, S. Frauendorf, Phys. Rev. C 71, 024308 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    M.J. Martin, Nucl. Data Sheets 63, 723 (1991)ADSCrossRefGoogle Scholar
  71. 71.
    M.J. Martin, Nucl. Data Sheets 70, 315 (1993)ADSCrossRefGoogle Scholar
  72. 72.
    E. Litvinova, P. Ring, Phys. Rev. C 73, 044328 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    E. Vigezzi, J. Phys. Conf. Ser. 981, 012007 (2018)CrossRefGoogle Scholar
  74. 74.
    E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 75, 064308 (2007)ADSCrossRefGoogle Scholar
  75. 75.
    E. Litvinova, A.V. Afanasjev, Phys. Rev. C 84, 014305 (2011)ADSCrossRefGoogle Scholar
  76. 76.
    E. Litvinova, Phys. Rev. C 85, 021303 (2012)ADSCrossRefGoogle Scholar
  77. 77.
    D. Tarpanov, J. Dobaczewski, J. Toivanen, B.G. Carlsson, Phys. Rev. Lett. 113, 252501 (2014)ADSCrossRefGoogle Scholar
  78. 78.
    A.V. Afanasjev, E. Litvinova, Phys. Rev. C 92, 044317 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    L.-G. Cuo, H. Sagawa, P.F. Bortignon, Phys. Rev. C 89, 044314 (2014)ADSCrossRefGoogle Scholar
  80. 80.
    A. Idini, F. Barranco, E. Vigezzi, Phys. Rev. C 85, 014331 (2012)ADSCrossRefGoogle Scholar
  81. 81.
    A. Idini, G. Potel, F. Barranco, E. Vigezzi, R.A. Broglia, Phys. Rev. C 92, 031304 (2015)ADSCrossRefGoogle Scholar
  82. 82.
    T. Lisinski, T. Duguet, K. Bennaceur, J. Meuer, Eur. Phys. J. A 40, 121 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    G. Gori, F. Ramponi, F. Barranco, P.F. Bortignon, R.A. Broglia, G. Colò, E. Vigezzi, Phys. Rev. C 72, 011302 (2005)ADSCrossRefGoogle Scholar
  84. 84.
    T. Duguet, T. Lesinski, K. Hebeler, A. Schwenk, Mod. Phys. Lett. 25, 1989 (2010)ADSCrossRefGoogle Scholar
  85. 85.
    N.V. Antonenko, L.A. Malov, Izv. RAN Ser. Phys. 78, 1402 (2014)Google Scholar
  86. 86.
    R.V. Jolos, L.A. Malov, N.Yu. Shirikova, A.V. Sushkov, J. Phys. G 38, 115103 (2011)ADSCrossRefGoogle Scholar
  87. 87.
    M. Bender, W. Nazarewicz, P.-G. Reinhard, Phys. Lett. B 515, 42 (2001)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. G. Adamian
    • 1
  • L. A. Malov
    • 1
  • N. V. Antonenko
    • 1
    • 2
  • H. Lenske
    • 3
  • Kun Wang
    • 4
  • Shan-Gui Zhou
    • 4
    • 5
    • 6
    • 7
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia
  3. 3.Institut für Theoretische Physik der Justus-Liebig-UniversitätGießenGermany
  4. 4.CAS Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  5. 5.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  6. 6.Center of Theoretical Nuclear PhysicsNational Laboratory of Heavy Ion AcceleratorLanzhouChina
  7. 7.Synergetic Innovation Center for Quantum Effects and ApplicationHunan Normal UniversityChangshaChina

Personalised recommendations