Advertisement

Isotopic yield and half-lives for the spontaneous fission of 280Ds and 282Cn, superheavy nuclei

  • M. R. Pahlavani
  • M. Joharifard
Regular Article - Theoretical Physics
  • 28 Downloads

Abstract.

The spontaneous fission of the 280Ds and 282Cn superheavy nuclei has been studied using the isotopic yield method. The Coulomb and the nuclear proximity potentials are considered for the fission barrier. The energy released in fission (Q-values), the driving potential (\( V-Q\)), the penetrability, the decay constant and the fission yield for each fragmentation have been calculated. As expected, with respect to the mass and charge asymmetry, the most favorable fragmentation in the binary spontaneous fission occurs for the highest Q-value and consequently for the lowest value of the driving potential. For the spontaneous fission of 280Ds and 282Cn superheavy isotopes, the highest yields have been seen for 134Te \( (N = 82, Z = 52)\) and 136Xe \( (N = 82, Z = 54)\) closed shell magic isotopes, respectively. The role of magic and near magic closed shell fragmentation is indicated by the analysis of the relative yields. The spontaneous fission half-lives of 280Ds and 282Cn have also been obtained and compared with the results of other theoretical and semi-empirical methods as well as experimental data. The comparison has revealed that the results of the present study acceptably agreed with the experimental data than the other theoretical and semi-empirical methods.

References

  1. 1.
    S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    S. Hofmann, D. Ackermann, S. Antalic et al., Eur. Phys. J. A 32, 251 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Roberto, C.W. Alexander, R.A. Boll et al., Nucl. Phys. A 944, 99 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    D. Naderi, S.A. Alavi, Phys. At. Nucl. 81, 196 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Pomorski, B. Nerlo-Pomorska, J. Bartel, C. Schmitt, Phys. Rev. C 97, 034319 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    O. Hahn, F. Strassmann, Naturwissenschaften 27, 11 (1939)ADSCrossRefGoogle Scholar
  7. 7.
    L. Meitner, O. Hahn, F. Strassmann, Z. Phys. 106, 249 (1937)ADSCrossRefGoogle Scholar
  8. 8.
    L. Meitner, Nature 96, 239 (1939)ADSCrossRefGoogle Scholar
  9. 9.
    O.R. Frisch, Nature 96, 276 (1939)ADSCrossRefGoogle Scholar
  10. 10.
    N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)ADSCrossRefGoogle Scholar
  11. 11.
    N. Bohr, Nature 143, 330 (1939)ADSCrossRefGoogle Scholar
  12. 12.
    N. Bohr, Phys. Rev. 55, 418 (1939)ADSCrossRefGoogle Scholar
  13. 13.
    D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Hamilton, A.V. Ramayya, J. Kormicki, W.C. Ma et al., J. Phys. G 20, L85 (1994)CrossRefGoogle Scholar
  15. 15.
    G.M. Ter-Akopian, J.H. Hamilton, Y.T. Oganessian, J. Kormicki et al., Phys. Rev. Lett. 73, 1477 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    C. Signarbieux, J. Phys. Lett. 42, L437 (1981)CrossRefGoogle Scholar
  17. 17.
    P. Armbruster, in International Conference “Nuclei far from stability”, Helsingor, DK, CERN 81-09, 675 (1981)Google Scholar
  18. 18.
    A. Sandulescu, W. Greiner, J. Phys. G 3, 189 (1977)ADSCrossRefGoogle Scholar
  19. 19.
    A. Sandulescu, W. Greiner, Rep. Prog. Phys. 55, 1423 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    F.J. Hambsch, H.H. Knitter, C.B. Jorgensen, Nucl. Phys. A 554, 209 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    A. Benoufella, G. Barreau, M. Asghar, P. Audouard et al., Nucl. Phys. A 565, 563 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    W. Schwab, H.G. Clerc, M. Mutterer, J.P. Theobald, H. Faust, Nucl. Phys. A 577, 674 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    A. Sandulescu, A. Florescu, F. Carstoiu, W. Greiner et al., Phys. Rev. C 54, 258 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    Y.X. Dardenne, R. Aryaeinejad, S.J. Asztalos, B.R.S. Babu et al., Phys. Rev. C 54, 206 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    M.R. Pahlavani, S.M. Mirfathi, Phys. Rev. C 96, 014606 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    M.R. Pahlavani, S.M. Mirfathi, Phys. Rev. C 93, 044617 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    M.R. Pahlavani, D. Naderi, Phys. Rev. C 83, 024602 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    D.J. Hinde et al., Phys. Rev. C 53, 1290 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    K. Nishio et al., Phys. Rev. C 82, 044604 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    D.J. Hinde et al., Phys. Rev. Lett. 101, 092701 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    M.R. Pahlavani, S.M. Mirfathi, Eur. Phys. J. A 52, 95 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M.R. Pahlavani, S.M. Mirfathi, Phys. Rev. C 92, 024622 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    A. Deppman, E. Andrade-II, V. Guimarães et al., Phys. Rev. C 88, 024608 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Ayyad, J. Benlliure et al., Phys. Rev. C 89, 054610 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    K.B. Gikal, E.M. Kozulin, A.A. Bogacher et al., Phys. At. 79, 1367 (2016)Google Scholar
  36. 36.
    D. Naderi, M.R. Pahlavani, S.A. Alavi, Phys. Rev. C 87, 054618 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    M.R. Pahlavani, D. Naderi, Eur. Phys. J. A 48, 129 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    M.R. Pahlavani, D. Naderi, S.M. Mirfathi, Mod. Phys. Lett. A 26, 1323 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    M.R. Pahlavani, P. Mehdipour, Int. J. Mod. Phys. E 27, 1850018 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    A. Deppman, E. Andrsade--II, V. Guimarães et al., Phys. Rev. C 87, 054604 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Daniel H. Morse, Arlyn J. Antolak, Barney L. Doyle, Nucl. Instrum. Methods Phys. Res. B 261, 378 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    P.B. Price, Nucl. Phys. A 502, 41c (1989)ADSCrossRefGoogle Scholar
  43. 43.
    M.R. Pahlavani, O.N. Ghodsi, M. Zadehrafi, Phys. Rev. C 96, 054612 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    S. Kumar, R.K. Gupta, W. Scheid, Int. J. Mod. Phys. E 3, 195 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    F. Gonnenwein, A. Moller, M. Cronni, M. Hesse et al., Nuovo Cimento A 110, 1089 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    A.V. Ramayya, J.H. Hamilton, J.K. Hwang, L.K. Peker et al., Phys. Rev. C 57, 2370 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    R. Smolanczuk, Phys. Rev. C 56, 812 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    A. Staszczak, A. Baran, W. Nazarewicz, Phys. Rev. C 87, 024320 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    D.N. Poenaru, R.A. Gherghescu, J. Phys. G, Nucl. Part. Phys. 41, 125104 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    D.C. Hoffman, T.M. Hamilton, M.R. Lane, Spontaneous fission, in Nuclear Decay Modes, edited by D.N. Poenaru, (Institute of Physics Publishing IOP, Bristol, 1996) Chapt. 10, pp. 393--432Google Scholar
  51. 51.
    K.P. Santhosh, A. Joseph, Pramana J. Phys. 64, 39 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    K.P. Santhosh, R.K. Biju, S. Sabina, J. Phys. G: Nucl. Part. Phys. 36, 115101 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    K.P. Santhosh, B. Priyanka, Nucl. Phys. A 940, 21 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)ADSCrossRefGoogle Scholar
  55. 55.
    N. Malhotra, R.K. Gupta, Phys. Rev. C 31, 1179 (1985)ADSCrossRefGoogle Scholar
  56. 56.
    R.K. Gupta, M. Balasubramaniam, R. Kumar, N. Singh et al., J. Phys. G: Nucl. Part. Phys. 31, 631 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    J. Blocki, W.J. Swiatecki, Ann. Phys. (N.Y.) 132, 53 (1983)ADSCrossRefGoogle Scholar
  58. 58.
    J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977)ADSCrossRefGoogle Scholar
  59. 59.
    A.J. Baltz, B.F. Bayman, Phys. Rev. C 26, 1969 (1982)ADSCrossRefGoogle Scholar
  60. 60.
    Y.J. Shi, W.J. Swiatecki, Nucl. Phys. A 438, 450 (1985)ADSCrossRefGoogle Scholar
  61. 61.
    Gurvinder Kaur, Neha Grover, Kirandeep Sandhu, Manoj K. Sharma, Nucl. Phys. A 927, 232 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    W.D. Myers, W.J. Swiatecki, Ark. Fys. 36, 343 (1967)Google Scholar
  63. 63.
    D.N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, Phys. Rev. C 32, 2198 (1985)ADSCrossRefGoogle Scholar
  64. 64.
    G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995)ADSCrossRefGoogle Scholar
  65. 65.
    A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003)ADSCrossRefGoogle Scholar
  66. 66.
    G. Audi et al., Chin. Phys. C 41, 030001 (2017)ADSCrossRefGoogle Scholar
  67. 67.
    D.N. Poenaru, W. Greiner, R.A. Gherghescu, At. Data Nucl. Data Tables 68, 91 (1998)ADSCrossRefGoogle Scholar
  68. 68.
    P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawac, At. Data Nucl. Data Tables 98, 149 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    B. Pfeiffer, K. Venkataramaniah, U. Czoka, C. Scheidenberger, At. Data Nucl. Data Tables 100, 403 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    Ch. Xu, Zh. Ren, Y. Guo, Phys. Rev. C 78, 044329 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    K.P. Santhosh, R.K. Biju, S. Sabina, Nucl. Phys. A 832, 220 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    X.J. Bao, S.Q. Guo, H.F. Zhang, Y.Z. Xing, J.M. Dong, J.Q. Li, J. Phys. G, Nucl. Part. Phys. 42, 085101 (2015)ADSCrossRefGoogle Scholar
  73. 73.
    Kaji Daiya, Morita Kosuke, Morimoto Kouji, Haba Hiromitsu et al., J. Phys. Soc. Jpn. 86, 034201 (2017)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Basic ScienceUniversity of MazandaranBabolsarIran

Personalised recommendations