Advertisement

Study of mass yield and kinetic energy distribution of fission fragments from fission of the excited compound nucleus 254Fm produced in fusion reaction

  • H. Eslamizadeh
  • M. Soltani
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract.

A stochastic approach based on four-dimensional Langevin fission dynamics has been used to calculate the anisotropy of fission fragment angular distribution, the mass and energy distribution of fission fragments, the yield and variance of the mass distribution of fission fragments, the fission cross section and the pre-scission neutron multiplicity for the compound nucleus 254Fm produced in the reaction 16O + 238U. In the dynamical calculations dissipation coefficient of K , \( \gamma_k\) , was considered as a free parameter and its magnitude inferred by fitting measured data on the anisotropy of fission fragments angular distribution. It was shown that the results of the anisotropy of fission fragments angular distribution for the compound nucleus 254Fm are in good agreement with the experimental data by using values of dissipation coefficient of K, equal to \(\gamma_{k}=(0.076-0.088)\) (MeV zs)-1/2. We also calculated the above-mentioned experimental data for the compound nucleus 254Fm by using \(\gamma_{k}=(0.076-0.088)\) (MeV zs)-1/2 and results of the calculations compared with the experimental data. A comparison of the theoretical results with the experimental data showed that the results of calculations are in good agreement with the experimental data, although at high energy the difference between the results of calculations with the experimental data for the variance of the mass distribution of fission fragments and the pre-scission neutron multiplicity is slightly high. It was also shown that at high energy the variance of the mass distribution of fission fragments and the pre-scission neutron multiplicity can be reproduced for the compound nucleus 254Fm by using values of dissipation coefficient of K equal to \(\gamma_{k}=0.098\) (MeV zs)-1/2 and \(\gamma_{k}=0.065\) (MeV zs)-1/2, respectively.

References

  1. 1.
    P.N. Nadtochy, E.G. Ryabov, A.V. Cheredov, G.D. Adeev, Eur. Phys. J. A 52, 308 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    C. Ishizuka, M.D. Usang, F.A. Ivanyuk, J.A. Maruhn, K. Nishio, S. Chiba, Phys. Rev. C 96, 064616 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    K. Mazurek, P.N. Nadtochy, E.G. Ryabov, G.D. Adeev, Eur. Phys. J. A 53, 79 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    H. Eslamizadeh, Phys. Rev. C 94, 044610 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    K.-H. Schmidt, B. Jurado, Eur. Phys. J. A 51, 176 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    H. Eslamizadeh, J. Phys. G: Nucl. Part. Phys. 44, 025102 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    V.T. Maslyuk, O.O. Parlag, M.I. Romanyuk, O.I. Lendyel, T.J. Marinetc, Eur. Phys. J. A 119, 12001 (2017)Google Scholar
  8. 8.
    H. Eslamizadeh, H. Razazzadeh, Phys. Lett. B 777, 265 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    W. Ye, J. Tian, Phys. Rev. C 93, 044603 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    N. Wang, W. Ye, Phys. Rev. C 97, 014603 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    H. Eslamizadeh, Int. J. Mod. Phys. E 21, 1250008 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    M.D. Usang, F.A. Ivanyuk, C. Ishizuka, S. Chiba, Phys. Rev. C 96, 064617 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    V.Y. Denisov, T.O. Margitych, I.Y. Sedykh, Nucl. Phys. A 958, 101 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    H. Eslamizadeh, Int. J. Mod. Phys. E 24, 1550052 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    H. Eslamizadeh, M. Soltani, Ann. Nucl. Energy 80, 261 (2015)CrossRefGoogle Scholar
  16. 16.
    I.I. Gontchar, D.J. Hinde, M. Dasgupta, J.O. Newton, Phys. Rev. C 69, 024610 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    M.V. Chushnyakova, I.I. Gontchar, Phys. Rev. C 87, 014614 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    J.P. Lestone, Phys. Rev. C 59, 1540 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    J.P. Lestone, S.G. McCalla, Phys. Rev. C 79, 044611 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    P.N. Nadtochy, E.G. Ryabov, A.E. Gegechkori, Yu.A. Anischenko, G.D. Adeev, Phys. Rev. C 89, 014616 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    P.N. Nadtochy, E.G. Ryabov, A.E. Gegechkori, Yu.A. Anischenko, G.D. Adeev, Phys. Rev. C 85, 064619 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Yu.A. Anischenko, A.E. Gegechkori, G.D. Adeev, Acta Phys. Pol. B 42, 493 (2011)CrossRefGoogle Scholar
  23. 23.
    P.N. Nadtochy, G.D. Adeev, A.V. Karpov, Phys. Rev. C 65, 064615 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    A.V. Karpov, P.N. Nadtochy, D.V. Vanin, G.D. Adeev, Phys. Rev. C 63, 054610 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    A.V. Karpov, R.M. Hiryanov, A.V. Sagdeev, G.D. Adeev, J. Phys. G: Nucl. Part. Phys. 34, 255 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    M. Brack, J. Damgaard, A.S. Jensen, H.C. Puli, V.M. Strutinsky, Rev. Mod. Phys. 44, 320 (1972)ADSCrossRefGoogle Scholar
  27. 27.
    A.V. Ignatyuk, M.G. Itkis, V.N. Okolovich, G.N. Smirenkin, A.S. Tishin, Yad. Fiz. 21, 1185 (1975)Google Scholar
  28. 28.
    K.T.R. Davies, A.J. Sierk, J.R. Nix, Phys. Rev. C 13, 2358 (1976)CrossRefGoogle Scholar
  29. 29.
    A.J. Sierk, Phys. Rev. C 33, 2039 (1986)ADSCrossRefGoogle Scholar
  30. 30.
    H. Eslamizadeh, J. Phys. G: Nucl. Part. Phys. 39, 085110 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    S.G. McCalla, J.P. Lestone, Phys. Rev. Lett. 101, 032702 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    T. Døssing, J. Randrup, Nucl. Phys. A 433, 215 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    J. Randrup, Nucl. Phys. A 383, 468 (1982)ADSCrossRefGoogle Scholar
  34. 34.
    P.N. Nadtochy, E.G. Ryabov, G.D. Adeev, J. Phys. G: Nucl. Part. Phys. 42, 045107 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    K.T.R. Davies, R.A. Managan, J.R. Nix, A.J. Sierk, Phys. Rev. C 16, 1890 (1977)ADSCrossRefGoogle Scholar
  36. 36.
    J. Bao, Y. Zhuo, X. Wu, Z. Phys. A: Hadrons Nucl. 352, 321 (1995)CrossRefGoogle Scholar
  37. 37.
    P. Fröbrich, I.I. Gontchar, Phys. Rep. 292, 131 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    M. Blann, Phys. Rev. C 21, 1770 (1980)ADSCrossRefGoogle Scholar
  39. 39.
    J.E. Lynn, The Theory of Neutron Resonance Reactions (Clarendon, Oxford, 1968) p. 325Google Scholar
  40. 40.
    V.G. Nedoresov, Yu.N. Ranyuk, Fotodelenie yader za gigantskim rezonansom (Naukova Dumka, Kiev, 1989) (in Russian)Google Scholar
  41. 41.
    A.S. Iljinov, M.V. Mebel, N. Bianchi, E.D. Sanctis, C. Guaraldo, V. Lucherini, V. Muccifora, E. Polli, A.R. Reolon, P. Rossi, Nucl. Phys. A 543, 517 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    A.R. Junghans, M.de Jong, H.G. Clerc, A.V. Ignatyuk, G.A. Kudyaev, K.H. Schmidt, Nucl. Phys. A 629, 635 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic, New York, 1973) p. 427Google Scholar
  44. 44.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 2 (World Scientific, Singapore, 1998) p. 748Google Scholar
  45. 45.
    B.B. Back, R.R. Betts, J.E. Gindler, B.D. Wilkins, S. Saini, M.B. Tsang, C.K. Gelbke, W.G. Lynch, M.A. McMahan, P.A. Baisden, Phys. Rev. C 32, 195 (1985)ADSCrossRefGoogle Scholar
  46. 46.
    D.J. Hinde, M. Dasgupta, J.R. Leigh, J.C. Mein, C.R. Morton, J.O. Newton, H. Timmers, Phys. Rev. C 53, 1290 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    É.M. Kozulin, A.Ya. Rusanov, G.N. Smirenkin, Phys. At. Nucl. 56, 166 (1993)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Basic SciencesPersian Gulf UniversityBushehrIran

Personalised recommendations