Advertisement

Collective flows of \(\alpha\)-clustering 12C + 197Au by using different flow analysis methods

  • S. Zhang
  • Y. G. Ma
  • J. H. Chen
  • W. B. He
  • C. Zhong
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract.

Recently the ratio of triangular flow to the elliptic flow (\(v_{3}/v_{2}\)) of hadrons was proposed as a probe to detect the pattern of \( \alpha\)-clustering 12C in 12C + 197Au collisions at relativistic energy by a participant plane method (Phys. Rev. C 95, 064904 (2017)). In the experimental event plane method, Q-cumulant method and two-particle correlation method with rapidity gap were always used for the measurement of collective flow only by means of momentum space. By comparing the collective flow through the different methods, the ratio of \(v_{3}/v_{2}\) could be taken as an experimental probe to distinguish the different \(\alpha\)-clustering structure of 12C .

References

  1. 1.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. Lett. 112, 162301 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 88, 014902 (2013)CrossRefGoogle Scholar
  3. 3.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 88, 014904 (2013)CrossRefGoogle Scholar
  4. 4.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. Lett. 114, 252302 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 92, 014904 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    PHENIX Collaboration (A. Adare), arXiv:1410.2559 (2014)Google Scholar
  7. 7.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 92, 021901(R) (2015)ADSCrossRefGoogle Scholar
  8. 8.
    R.D. de Souza, J. Takahashi, T. Kodama, P. Sorensen, Phys. Rev. C 85, 054909 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    A. Chaudhuri, Phys. Lett. B 710, 339 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    H. Song, S.A. Bass, U. Heinzi, Phys. Rev. C 83, 054912 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Floerchinger, U.A. Wiedemann, Phys. Lett. B 728, 407 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    P. Bożek, W. Broniowski, E.R. Arriola et al., Phys. Rev. C 90, 064902 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    W. Broniowski, E.R. Arriola, Phys. Rev. Lett. 112, 112501 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    L. Ma, G.L. Ma, Y.G. Ma, Phys. Rev. C 94, 044915 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    L. Ma, G.L. Ma, Y.G. Ma, Phys. Rev. C 89, 044907 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    L.X. Han, G.L. Ma, Y.G. Ma et al., Phys. Rev. C 84, 064907 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    H.-C. Song, Y. Zhou, K. Gajdosova, Nucl. Sci. Tech. 28, 99 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Wang, Y.G. Ma, G.Q. Zhang et al., Nucl. Sci. Tech. 24, 030501 (2013)Google Scholar
  19. 19.
    C.C. Guo, W.B. He, Y.G. Ma, Chin. Phys. Lett. 34, 092101 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    X.-F. Luo, N. Xu, Nucl. Sci. Tech. 28, 112 (2017)CrossRefGoogle Scholar
  21. 21.
    C.M. Ko, F. Li, Nucl. Sci. Tech. 27, 140 (2016)CrossRefGoogle Scholar
  22. 22.
    Q.Y. Shou, G.L. Ma, Y.G. Ma, Phys. Rev. C 90, 047901 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    S. Zhang, Y.G. Ma, J.H. Chen, W.B. He, C. Zhong, Phys. Rev. C 95, 064904 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    F.D. Murnaghan, Bull. Am. Math. Soc. 39, 487 (1933)CrossRefGoogle Scholar
  25. 25.
    W.B. He, Y.G. Ma, X.G. Cao, X.Z. Cai, G.Q. Zhang, Phys. Rev. Lett. 113, 032506 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    W.B. He, Y.G. Ma, X.G. Cao et al., Phys. Rev. C 94, 014301 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    B.S. Huang, Y.G. Ma, W.B. He, Phys. Rev. C 95, 034606 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    B.S. Huang, Y.G. Ma, W.B. He, Eur. Phys. J. A 53, 119 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    S.A. Voloshin, A.M. Poskanzer, A. Tang et al., Phys. Lett. B 659, 537 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    R.A. Lacey, R. Wei, J. Jia et al., Phys. Rev. C 83, 044902 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 58, 1671 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    PHENIX Collaboration (S. Afanasiev et al.), Phys. Rev. C 80, 024909 (2009)CrossRefGoogle Scholar
  35. 35.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 86, 054908 (2012)CrossRefGoogle Scholar
  36. 36.
    A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C 83, 044913 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    ATLAS Collaboration (G. Aad et al.), Phys. Rev. C 86, 014907 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    CMS Collaboration (S. Chatrchyan et al.), Eur. Phys. J C 72, 1 (2012)Google Scholar
  39. 39.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Lett. B 724, 213 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    A. Bzdak, G.-L. Ma, Phys. Rev. Lett. 113, 252301 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    CMS Collaboration (V. Khachatryan et al.), Phys. Lett. B 765, 193 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    Z.-W. Lin, C.M. Ko, B.-A. Li et al., Phys. Rev. C 72, 064901 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    G.-L. Ma, Z.-W. Lin, Phys. Rev. C 93, 054911 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Z.-w. Lin, C.M. Ko, S. Pal, Phys. Rev. Lett. 89, 152301 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    G.-L. Ma, S. Zhang, Y.-G. Ma et al., Phys. Lett. B 641, 362 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 101, 252301 (2008)CrossRefGoogle Scholar
  47. 47.
    X.-H. Jin, J.-H. Chen, Y.-G. Ma et al., Nucl. Sci. Tech. 29, 54 (2018)CrossRefGoogle Scholar
  48. 48.
    X.-H. Jin, J.-H. Chen, Z.-W. Lin et al., Sci. China Phys. Mech. Astron. 62, 11012 (2019)ADSCrossRefGoogle Scholar
  49. 49.
    X.-N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)ADSCrossRefGoogle Scholar
  50. 50.
    M. Gyulassy, X.-N. Wang, Comput. Phys. Commun. 83, 307 (1994)ADSCrossRefGoogle Scholar
  51. 51.
    B. Zhang, Comput. Phys. Commun. 109, 193 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    B.-A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995)ADSCrossRefGoogle Scholar
  53. 53.
    T. Maruyama, K. Niita, A. Iwamoto, Phys. Rev. C 53, 297 (1996)ADSCrossRefGoogle Scholar
  54. 54.
    L. He, T. Edmonds, Z.-W. Lin, F. Liu, D. Molnar, F. Wang, Phys. Lett. B 753, 506 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    G.-L. Ma, A. Bzdak, Nucl. Phys. A 956, 745 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    F.G. Gardim, F. Grassi, M. Luzum, J.-Y. Ollitrault, Phys. Rev. C 85, 024908 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    H. Niemi, G.S. Denicol, H. Holopainen, P. Huovinen, Phys. Rev. C 87, 054901 (2013)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. Zhang
    • 1
    • 2
  • Y. G. Ma
    • 1
    • 2
    • 3
    • 4
  • J. H. Chen
    • 1
    • 2
  • W. B. He
    • 1
  • C. Zhong
    • 1
    • 2
  1. 1.Institute of Modern Physics, Department of Nuclear Science and TechnologyFudan UniversityShanghaiChina
  2. 2.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.ShanghaiTech UniversityShanghaiChina

Personalised recommendations