Advertisement

Solid deuterium surface degradation at ultracold neutron sources

  • A. Anghel
  • T. L. Bailey
  • G. Bison
  • B. Blau
  • L. J. Broussard
  • S. M. Clayton
  • C. Cude-Woods
  • M. Daum
  • A. Hawari
  • N. Hild
  • P. Huffman
  • T. M. Ito
  • K. Kirch
  • E. Korobkina
  • B. Lauss
  • K. Leung
  • E. M. Lutz
  • M. Makela
  • G. Medlin
  • C. L. Morris
  • R. W. Pattie
  • D. Ries
  • A. Saunders
  • P. Schmidt-Wellenburg
  • V. Talanov
  • A. R. Young
  • B. Wehring
  • C. White
  • M. Wohlmuther
  • G. Zsigmond
Regular Article - Experimental Physics
  • 32 Downloads

Abstract.

Solid deuterium (sD \( _2\) is used as an efficient converter to produce ultracold neutrons (UCN). It is known that the sD \( _2\) must be sufficiently cold, of high purity and mostly in its ortho-state in order to guarantee long lifetimes of UCN in the solid from which they are extracted into vacuum. Also the UCN transparency of the bulk sD \( _2\) material must be high because crystal inhomogeneities limit the mean free path for elastic scattering and reduce the extraction efficiency. Observations at the UCN sources at Paul Scherrer Institute and at Los Alamos National Laboratory consistently show a decrease of the UCN yield with time of operation after initial preparation or later treatment (“conditioning”) of the sD \( _2\) . We show that, in addition to the quality of the bulk sD \( _2\) , the quality of its surface is essential. Our observations and simulations support the view that the surface is deteriorating due to a build-up of D \( _2\) frost-layers under pulsed operation which leads to strong albedo reflections of UCN and subsequent loss. We report results of UCN yield measurements, temperature and pressure behavior of deuterium during source operation and conditioning, and UCN transport simulations. This, together with optical observations of sD \( _2\) frost formation on initially transparent sD \( _2\) in offline studies with pulsed heat input at the North Carolina State University UCN source, results in a consistent description of the UCN yield decrease.

References

  1. 1.
    R. Golub, D.J. Richardson, S.K. Lamoreaux, Ultra-Cold Neutrons (Adam Hilger, Bristol, Philadelphia, and New York, 1991)Google Scholar
  2. 2.
    H. Abele, Prog. Part. Nucl. Phys. 60, 1 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    D. Dubbers, M.G. Schmidt, Rev. Mod. Phys. 83, 1111 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    I.S. Altarev, Yu.V. Borisov, A.B. Brandin, V.F. Ezhov, S.N. Ivanov, G.K. Kunstman, V.M. Lobashev, V.A. Nazarenko, V.L. Ryabov, A.P. Serebrov, R.R. Taldaev, Phys. Lett. A 80, 413 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    R. Golub, K. Boenig, Z. Phys. B 51, 95 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    S.S. Yu, Z.-Ch. Malik, R. Golub, Z. Phys. B 62, 137 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    A. Steyerl, H. Nagel, F.-X. Schreiber, K.-A. Steinhauser, R. Gaehler, W. Glaeser, P. Ageron, J.M. Astruc, W. Drexel, G. Gervais, W. Mampe, Phys. Lett. A 116, 347 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    R. Golub, J.M. Pendlebury, Phys. Lett. A 62, 337 (1977)ADSCrossRefGoogle Scholar
  9. 9.
    A.P. Serebrov, V.A. Mityukhlyaev, A.A. Zakharov, V.V. Nesvizhesvsky, A.G. Kharitonov, JETP Lett. 59, 757 (1994)ADSGoogle Scholar
  10. 10.
    A.P. Serebrov, V.A. Mityukhlyaev, A.A. Zakharov, A.G. Kharitonov, V.V. Nesvizhesvsky, M.S. Lasakov, R.R. Tal'daev, A.V. Aldushchenkov, A.V. Varlamov, V.E. Vasil'ev, G. Greene, T. Bowles, JETP Lett. 62, 785 (1995)ADSGoogle Scholar
  11. 11.
    A. Serebrov, V. Mityukhlyaev, A. Zakharov, A. Kharitonov, V. Shustov, V. Kuz'minov, M. Lasakov, R. Tal'daev, A. Aldushchenkov, V. Varlamov, A. Vasil'ev, M. Sazhin, G. Greene, T. Bowles, R. Hill, S. Seestrom, P. Geltenbort, Nucl. Instrum. Methods A 440, 658 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    A.P. Serebrov, E.A. Kolomenski, M.S. Lasakov, V.A. Mityukhlyaev, A.N. Pirozhkov, I.A. Potapov, E. Varlamov, A.V. Vasliev, A.R. Young, A. Zakharov, JETP Lett. 74, 302 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Yu.N. Pokotilovski, Nucl. Instrum. Methods A 356, 412 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    C.L. Morris, J.M. Anaya, T.J. Bowles, B.W. Filippone, P. Geltenbort, R.E. Hill, M. Hino, S. Hoedl, G.E. Hogan, T.M. Ito, T. Kawai, K. Kirch, S.K. Lamoreaux, C.-Y. Liu, M. Makela, L.J. Marek, J.W. Martin, R.N. Mortensen, A. Pichlmaier, A. Saunders, S.J. Seestrom, D. Smith, W. Teasdale, B. Tipton, M. Utsuro, A.R. Young, J. Yuan, Phys. Rev. Lett. 89, 272501 (2002)CrossRefGoogle Scholar
  15. 15.
    A. Saunders, J.M. Anaya, T.J. Bowles, B.W. Filippone, P. Geltenbort, R.E. Hill, M. Hino, S. Hoedl, G.E. Hogan, T.M. Ito, K.W. Jones, T. Kawai, K. Kirch, S.K. Lamoreaux, C.-Y. Liu, M. Makela, L.J. Marek, J.W. Martin, C.L. Morris, R.N. Mortensen, A. Pichlmaier, S.J. Seestrom, A. Serebrov, D. Smith, W. Teasdale, B. Tipton, R.B. Vogelaar, A.R. Young, J. Yuan, Phys. Lett. B 593, 55 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    C.-Y. Liu, A.R. Young, S.K. Lamoreaux, Phys. Rev. B 62, R3581 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    F. Atchison, B. van den Brandt, Brys T., M. Daum, P. Fierlinger, P. Hautle, R. Henneck, S. Heule, M. Kasprzak, K. Kirch, J.A. Konter, A. Michels, A. Pichlmaier, M. Wohlmuther, A. Wokaun, K. Bodek, U. Szerer, P. Geltenbort, J. Zmeskal, Y. Pokotilovskiy, Phys. Rev. C 71, 054601 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    F. Atchison, B. Blau, K. Bodek, B. van den Brandt, T. Brys, M. Daum, P. Fierlinger, A. Frei, P. Geltenbort, P. Hautle, R. Henneck, S. Heule, A. Holley, M. Kasprzak, K. Kirch, A. Knecht, J. A. Konter, M. Kuzniak, C.-Y. Liu, C.L. Morris, A. Pichlmaier, C. Plonka, Y. Pokotilovski, A. Saunders, Y. Shin, D. Tortorella, M. Wohlmuther, A. R. Young, J. Zejma, G. Zsigmond, Phys. Rev. Lett. 99, 262502 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    A. Frei, E. Gutsmield, C. Morkel, A.R. Mueller, S. Paul, S. Rols, H. Schober, T. Unruh, EPL 92, 62001 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    F. Atchison, B. Blau, B. van den Brandt, T. Brys, M. Daum, P. Fierlinger, P. Hautle, R. Henneck, S. Heule, M. Kasprzak, K. Kirch, J. Kohlbrecher, G. Kuehen, J.A. Konter, A. Pichlmaier, A. Wokaun, K. Bodek, P. Geltenbort, J. Zmeskal, Phys. Rev. Lett. 95, 182502 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    F. Atchison, B. Blau, K. Bodek, B. van den Brandt, T. Brys, M. Daum, P. Fierlinger, A. Frei, P. Geltenbort, P. Hautle, R. Henneck, S. Heule, A. Holley, M. Kasprzak, K. Kirch, A. Knecht, J.A. Konter, M. Kuzniak, C.-Y. Liu, C.L. Morris, A. Pichlmaier, C. Plonka, Y. Pokotilovski, A. Saunders, Y. Shin, D. Tortorella, M. Wohlmuther, A.R. Young, J. Zejma, G. Zsigmond, EPL 95, 12001 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Yu.N. Pokotilovskyi, Nucl. Instrum. Methods A 675, 29 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    R.E. Hill, J.M. Anaya, T.J. Bowles, G.L. Greene, G. Hogan, S. Lamoreaux, L. Marek, R. Mortenson, C.L. Morris, A. Saunders, S.J. Seestrom, W. Teasdale, S. Hoedl, C.Y. Liu, D.A. Smith, A. Young, B.W. Filippone, J. Hua, T. Ito, E. Pasyuk, P. Geltenbort, A. Garcia, B. Fujikawa, S. Baessler, A. Serebrov, Nucl. Instrum. Methods A 440, 674 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    A. Saunders, M. Makela, Y. Bagdasarova, H.O. Back, J. Boissevain, L.J. Broussard, T.J. Bowles, R. Carr, S.A. Currie, B. Filippone, A. Garcia, P. Geltenbort, K.P. Hickerson, R.E. Hill, J. Hoagland, S. Hoedl, A.T. Holley, G. Hogan, T.M. Ito, Steve Lamoreaux, Chen-Yu Liu, J. Liu, R.R. Mammei, J. Martin, D. Melconian, M.P. Mendenhall, C.L. Morris, R.N. Mortensen, R.W. Pattie, M. Pitt, B. Plaster, J. Ramsey, R. Rios, A. Sallaska, S.J. Seestrom, E.I. Sharapov, S. Sjue, W.E. Sondheim, W. Teasdale, A.R. Young, B. VornDick, R.B. Vogelaar, Z. Wang, Yanping Xu, Rev. Sci. Instrum. 84, 013304 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    T.M. Ito, E.R. Adamek, N.B. Callahan, J.H. Choi, S.M. Clayton, C. Cude-Woods, S. Currie, X. Ding, D.E. Fellers, P. Geltenbort, S.K. Lamoreaux, C.Y. Liu, S. MacDonald, M. Makela, C.L. Morris, R.W. Pattie Jr., J.C. Ramsey, D.J. Salvat, A. Saunders, E.I. Sharapov, S. Sjue, A.P. Sprow, Z. Tang, H.L. Weaver, W. Wei, A.R. Young, Phys. Rev. C 97, 012501 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    A. Anghel, F. Atchison, B. Blau, B. van den Brandt, M. Daum, R. Doelling, M. Dubs, P.-A. Duperrex, A. Fuchs, D. George, L. Göltl, P. Hautle, G. Heidenreich, F. Heinrich, R. Henneck, S. Heule, Th. Hofmann, St. Joray, M. Kasprzak, K. Kirch, A. Knecht, J.A. Konter, T. Korhonen, M. Kuzniak, B. Lauss, A. Mezger, A. Mtchedlishvili, G. Petzoldt, A. Pichlmaier, D. Reggiani, R. Reiser, U. Rohrer, M. Seidel, H. Spitzer, K. Thomsen, W. Wagner, M. Wohlmuther, G. Zsigmond, J. Zuellig, K. Bodek, S. Kistryn, J. Zejma, P. Geltenbort, C. Plonka, S. Grigoriev, Nucl. Instrum. Methods A 611, 272 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    B. Lauss, AIP Conf. Proc. 1441, 576 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    B. Lauss, Hyperfine Interact. 211, 21 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    B. Lauss, Phys. Proc. 51, 98 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    H. Becker, G. Bison, B. Blau, Z. Chowdhuri, J. Eikenberg, M. Fertl, K. Kirch, B. Lauss, G. Perret, D. Reggiani, D. Ries, P. Schmidt-Wellenburg, V. Talanov, M. Wohlmuther, G. Zsigmond, Nucl. Instrum. Methods A 777, 20 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    G. Bison, M. Daum, K. Kirch, B. Lauss, D. Ries, P. Schmidt-Wellenburg, G. Zsigmond, T. Brenner, P. Geltenbort, T. Jenke, O. Zimmer, M. Beck, W. Heil, J. Kahlenberg, J. Karch, K. Ross, K. Eberhardt, C. Geppert, S. Karpuk, T. Reich, C. Siemensen, Y. Sobolev, N. Trautmann, Phys. Rev. C 95, 045503 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    J. Karch, Yu. Sobolev, M. Beck, K. Eberhardt, G. Hampel, W. Heil, R. Kieser, T. Reich, N. Trautmann, M. Ziegner, Eur. Phys. J. A 50, 78 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    J. Kahlenberg, D. Ries, K.U. Ross, C. Siemensen, M. Beck, C. Geppert, W. Heil, N. Hild, J. Karch, S. Karpuk, F. Kories, M. Kretschmer, B. Lauss, T. Reich, Y. Sobolev, N. Trautmann, Eur. Phys. J. A 53, 226 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    E. Korobkina, B.W. Wehring, A.I. Hawari, A.R. Young, P.R. Huffman, R. Golub, Y. Xu, G. Palmquist, Nucl. Instrum. Methods A 579, 530 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    P.C. Souers, Hydrogen Properties for Fusion Research (Univ. of California Press, Berkeley-Los Angeles-London, 1986)Google Scholar
  36. 36.
    K. Bodek, B. van den Brandt, T. Brys, M. Daum, P. Fierlinger, P. Geltenbort, M. Giersch, P. Hautle, R. Henneck, M. Kasprzak, K. Kirch, J.A. Konter, G. Kuehne, M. Kuzniak, K. Mishima, A. Pichlmaier, D. Raetz, A. Serebrov, J. Zmeskal, Nucl. Instrum. Methods A 533, 491 (2004)ADSGoogle Scholar
  37. 37.
    G.W. Collins, E.M. Fearon, E.R. Mapoles, R.T. Tsugawa, P.C. Souers, P.A. Fedders, Phys. Rev. B 44, 6598 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    M. Seidel, S. Adam, A. Adelmann, C. Baumgarten, Y.J. Bi, R. Doelling, H. Fitze, A. Fuchs, M. Humbel, J. Grillenberger, D. Kiselev, A. Mezger, D. Reggiani, M. Schneider, J.J. Yang, H. Zhang, T.J. Zhang, Production of a 1.3 MW proton beam at PSI, in Proceedings of IPACŠ10, Kyoto, Japan, (IPAC'10 OC/ACFA, 2010) TUYRA03, p. 1309 Google Scholar
  39. 39.
    M. Wohlmuther, G. Heidenreich, Nucl. Instrum. Methods A 564, 51 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    K. Kirch, B. Lauss, P. Schmidt-Wellenburg, G. Zsigmond, Nucl. Phys. News 20, 17 (2010)CrossRefGoogle Scholar
  41. 41.
    F. Atchison, B. Blau, K. Bodek, B. van den Brandt, T. Brys, M. Daum, P. Fierlinger, A. Frei, P. Geltenbort, P. Hautle, R. Henneck, S. Heule, A. Holley, M. Kasprzak, K. Kirch, A. Knecht, J.A. Konter, M. Kuzniak, C.-Y. Liu, C.L. Morris, A. Pichlmaier, C. Plonka, Y. Pokotilovski, A. Saunders, Y. Shin, D. Tortorella, M. Wohlmuther, A.R. Young, J. Zejma, G. Zsigmond, Nucl. Instrum. Methods A 611, 252 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    A.P. Serebrov, V.A. Mityukhlyaev, A.A. Zakharov, T. Bowles, G. Greene, J. Sromicki, JETP Lett. 66, 802 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    A.R. Young, S. Clayton, B.W. Filippone, P. Geltenbort, T.M. Ito, C.-Y. Liu, M. Makela, C.L. Morris, B. Plaster, A. Saunders, S.J. Seestrom, R.B. Vogelaar, J. Phys. G: Nucl. Part. Phys. 41, 114007 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    V. Talanov, Numerical Monte Carlo simulation and parametrization of the deposited energy density distribution in the solid deuterium moderator of the UCN source, tech. rep., Paul Scherrer Institute TM-85-17-09, 2017 (unpublished)Google Scholar
  45. 45.
    I. Altarev, F. Atchison, M. Daum, A. Frei, E. Gutsmiedl, G. Hampel, F.J. Hartmann, W. Heil, A. Knecht, J.V. Kratz, T. Lauer, M. Meier, S. Paul, Y. Sobolev, N. Wiehl, Phys. Rev. Lett. 100, 014801 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    I. Altarev, M. Daum, A. Frei, E. Gutsmiedl, G. Hampel, F.J. Hartmann, W. Heil, A. Knecht, J.V. Kratz, T. Lauer, M. Meier, S. Paul, U. Schmidt, Y. Sobolev, N. Wiehl, G. Zsigmond, Eur. Phys. J. A 37, 9 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    B. Blau, M. Daum, M. Fertl, P. Geltenbort, L. Goeltl, R. Henneck, K. Kirch, A. Knecht, B. Lauss, P. Schmidt-Wellenburg, G. Zsigmond, Nucl. Instrum. Methods A 807, 30 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    C.A. Baker, G. Ban, K. Bodek, M. Burghoff, Z. Chowdhuri, M. Daum, M. Fertl, B. Franke, P. Geltenbort, K. Green, M.G.D. van der Grinten, E. Gutsmiedl, P.G. Harris, R. Henneck, P. Iaydjiev, S.N. Ivanov, N. Khomutov, M. Kasprzak, K. Kirch, S. Kistryn, S. Knappe-Gruneberg, A. Knecht, P. Knowles, A. Kozela, B. Lauss, T. Lefort, Y. Lemiere, O. Naviliat-Cuncic, J.M. Pendlebury, E. Pierre, F.M. Piegsa, G. Pignol, G. Quemener, S. Roccia, P. Schmidt-Wellenburg, D. Shiers, K.F. Smith, A. Schnabel, L. Trahms, A. Weis, J. Zejma, J. Zenner, G. Zsigmond, Phys. Proc. 17, 159 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    J.M. Pendlebury, S. Afach, N.J. Ayres, C.A. Baker, G. Ban, G. Bison, K. Bodek, M. Burghoff, P. Geltenbort, K. Green, W.C. Griffith, M. van der Grinten, Z.D. Grujić, P.G. Harris, V. Hélaine, P. Iaydjiev, S.N. Ivanov, M. Kasprzak, Y. Kermaidic, K. Kirch, H.-C. Koch, S. Komposch, A. Kozela, J. Krempel, B. Lauss, T. Lefort, Y. Lemière, D.J.R. May, M. Musgrave, O. Naviliat-Cuncic, F.M. Piegsa, G. Pignol, P.N. Prashanth, G. Quéméner, M. Rawlik, D. Rebreyend, J.D. Richardson, D. Ries, S. Roccia, D. Rozpedzik, A. Schnabel, P. Schmidt-Wellenburg, N. Severijns, D. Shiers, J.A. Thorne, A. Weis, O.J. Winston, E. Wursten, J. Zejma, G. Zsigmond, Phys. Rev. D 92, 092003 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    R.W. Pattie Jr., N.B. Callahan, C. Cude-Woods, E.R. Adamek, L.J. Broussard, S.M. Clayton, S.A. Currie, E.B. Dees, X. Ding, E.M. Engel, D.E. Fellers, W. Fox, K.P. Hickerson, M.A. Hoffbauer, A.T. Holley, A. Komives, C.-Y. Liu, S.W.T. MacDonald, M. Makela, C.L. Morris, J.D. Ortiz, J. Ramsey, D.J. Salvat, A. Saunders, S.J. Seestrom, E.I. Sharapov, S.K. Sjue, Z. Tang, J. Vanderwerp, B. Vogelaar, P.L. Walstrom, Z. Wang, W. Wei, H.L. Weaver, J.W. Wexler, T.L. Womack, A.R. Young, B.A. Zeck, Science,  https://doi.org/10.1126/science.aan8895, https://doi.org/arXiv:1707.01817 (2017). -1pt
  51. 51.
    E. Korobkina, G. Medlin, B. Wehring, A.I. Hawari, P.R. Huffman, A.R. Young, B. Beaumont, G. Palmquist, Nucl. Instrum. Methods A 767, 169 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    G. Medlin, Characterization of the PULSTAR Ultracold Neutron Source, PhD Thesis, North Carolina State University, Raleigh, USA (2017). -1ptGoogle Scholar
  53. 53.
    V.K. Ignatovich, The Physics of Ultracold Neutrons (Clarendon, Oxford, 1990). -1ptGoogle Scholar
  54. 54.
    G. Zsigmond, Nucl. Instrum. Methods A 881, 16 (2018)ADSCrossRefGoogle Scholar
  55. 55.
    F. Atchison, M. Daum, R. Henneck, S. Heule, M. Horisberger, M. Kasprzak, K. Kirch, A. Knecht, M. Kuzniak, B. Lauss, A. Mtchedlishvili, M. Meier, G. Petzoldt, C. Plonka-Spehr, R. Schelldorfer, U. Straumann, G. Zsigmond, Eur. Phys. J. A 44, 23 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    A. Kelly, G.W. Groves, Crystalography and Crystal Defects (Techbooks, 1991). -1ptGoogle Scholar
  57. 57.
    V. Bondar, S. Chesnevskaya, M. Daum, B. Franke, P. Geltenbort, L. Goeltl, E. Gutsmiedl, J. Karch, M. Kasprzak, G. Kessler, K. Kirch, H.-C. Koch, A. Kraft, T. Lauer, B. Lauss, E. Pierre, G. Pignol, D. Reggiani, P. Schmidt-Wellenburg, Yu. Sobolev, T. Zechlau, G. Zsigmond, Phys. Rev. C 96, 035205 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    Polish Grid Infrastructure, https://doi.org/www.plgrid.pl/en.

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Anghel
    • 1
  • T. L. Bailey
    • 2
  • G. Bison
    • 1
  • B. Blau
    • 1
  • L. J. Broussard
    • 3
  • S. M. Clayton
    • 3
  • C. Cude-Woods
    • 3
  • M. Daum
    • 1
  • A. Hawari
    • 2
  • N. Hild
    • 1
    • 4
  • P. Huffman
    • 2
  • T. M. Ito
    • 3
  • K. Kirch
    • 1
    • 4
  • E. Korobkina
    • 2
  • B. Lauss
    • 1
  • K. Leung
    • 2
  • E. M. Lutz
    • 2
  • M. Makela
    • 3
  • G. Medlin
    • 2
  • C. L. Morris
    • 3
  • R. W. Pattie
    • 3
  • D. Ries
    • 5
  • A. Saunders
    • 3
  • P. Schmidt-Wellenburg
    • 1
  • V. Talanov
    • 1
  • A. R. Young
    • 2
  • B. Wehring
    • 2
  • C. White
    • 2
  • M. Wohlmuther
    • 1
  • G. Zsigmond
    • 1
  1. 1.Paul Scherrer InstitutVilligen-PSISwitzerland
  2. 2.North Carolina State UniversityRaleighUSA
  3. 3.Los Alamos National LaboratoryLos AlamosUSA
  4. 4.ETH ZürichZürichSwitzerland
  5. 5.Inst. of Nuclear ChemistryJohannes Gutenberg University of MainzMainzGermany

Personalised recommendations