Advertisement

Effects of shadowing in Pb + Pb collisions at energies available at the CERN Large Hadron Collider within the HIJING code

  • Khaled Abdel-WagedEmail author
  • Nuha Felemban
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract.

The charged particle central rapidity density per participant nucleon pair (\((\mathrm{d} N_{ch}/\mathrm{d} \eta)/(0.5\langle N_{part} \rangle)\)) as a function of the average number of participants (\( N_{part}\)) for \( \mathrm{Au}+\mathrm{Au}\) (\( \mathrm{Cu}+\mathrm{Cu}\)) collisions at \( \sqrt{s_{\mathrm{NN}}}=62.4\) and 200 GeV, and \( \mathrm{Pb}+\mathrm{Pb}\) collisions at \(\sqrt{s_{\mathrm{NN}}}=2.76\) and 5.02 TeV is investigated within an improved HIJING (ImHIJING/Cas) model. Compared to the standard HIJING version, it incorporates: i) more consistent parton densities, ii) a QCD running coupling, defined by the exact solution of the renormalization group equation, and iii) a spatial dependent nucleon shadowing, triggered by collective nucleon interactions with an incoming nucleon, and simulated by the collective cascade recipe. Predictions are compared using four different settings of nuclear shadowing of partons, based on the standard HIJING1.0(2.0) parameterizations. It is shown that ImHIJING/Cas/Set2 (that with both quark and soft gluon shadowing of strength \( s_{q(g)}\) can nicely reproduce the measured centrality dependence of \( (\mathrm{d} N_{ch}/\mathrm{d} \eta)/(0.5\langle N_{part} \rangle)\) at RHIC energy. As for LHC, a reduction of \( s_{g}\) by \( \sim 40\)% at very peripheral (90-100%) \( \mathrm{Pb}+\mathrm{Pb}\) collisions, as compared to free nucleon-nucleon collisions, is found to reproduce the measured data. The values of \(s_{q(g)}\) used in ImHIJING/Cas/Set2 calculations for most central 0-3(5)% \( \mathrm{Au}+\mathrm{Au} (\mathrm{Pb}+\mathrm{Pb})\) collisions at RHIC(LHC) energy, are found to be consistent with those employed in Set2 that reproduce the measured structure function ratios (\( 12F^{Pb}_{2}/207F^{C}_{2}\)) as a function of x.

References

  1. 1.
    X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    W.T. Deng, X.N. Wang, R. Xu, Phys. Rev. C 83, 014915 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    K. Werner, B. Guiot, I. Karpenko, T. Piergo, Phys. Rev. C 89, 064903 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    T. Pierog, I. Karpenko, J.M. Katzy, E. Yatsenko, K. Werner, Phys. Rev. C 92, 034906 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    M. Mitrovski, T. Schuster, G. Graf, H. Petersen, M. Bleicher, Phys. Rev. C 79, 044901 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    J.L. Albacete, A. Dumitru, Y. Nara, J. Phys. Conf. Ser. 316, 012011 (2011)CrossRefGoogle Scholar
  7. 7.
    Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    N. Armesto, C.A. Salgado, U.A. Wiedemann, Phys. Rev. Lett. 94, 022002 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    D. Kharzeev, E. Levin, M. Nardi, Nucl. Phys. A 747, 609 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    A. Bialas, R.A. Janik, R. Peschanski, Phys. Rev. C 76, 054901 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Z.J. Jiang, Y. Zhang, H.L. Zhang, H.P. Deng, Nucl. Phys. A 941, 188 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    S. Pal, M. Bleicher, Phys. Lett. B 709, 82 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Jun Xu, Che Ming Ko, Phys. Rev. C 83, 034904 (2011)CrossRefGoogle Scholar
  14. 14.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. Lett. 116, 222302 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    K. Abdel-Waged, N. Felemban, Phys. Rev. C 91, 034908 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    K. Abdel-Waged, N. Felemban, Phys. Rev. C 93, 024910 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Kh. Abdel-Waged, V.V. Uzhinskii, Phys. At. Nucl. 60, 828 (1997)Google Scholar
  19. 19.
    Kh. Abdel-Waged, V.V. Uzhinskii, J. Phys. G: Nucl. Phys. 24, 1723 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    K. Abdel-Waged, N. Felemban, J. Phys. G 45, 025104 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    A. Vogt, Comput. Phys. Commun. 170, 65 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    PHOBOS Collaboration (B. Alver et al.), Phys. Rev. C 83, 024913 (2011)CrossRefGoogle Scholar
  23. 23.
    ALICE Collaboration (J. Adam et al.), Phys. Lett. B 754, 373 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    B. Andersson, G. Gustafson, B. Nilsson-Almqvist, Nucl. Phys. B 281, 289 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    A. Capella, U. Sukhatme, J. Tran Thanh Van, Z. Phys. C 3, 329 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    J. Ranft, Phys. Rev. D 37, 1842 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    O.V. Tarasov, A.A. Vladimirov, A.Y. Zharkov, Phys. Lett. B 93, 429 (1980)ADSCrossRefGoogle Scholar
  28. 28.
    T. van Ritbergen, J. Vermaseren, S. Larin, Phys. Lett. B 400, 379 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    Kh. Abdel-Waged, Nuha Felemban, V.V. Uzhinskii, Phys. Rev. C 84, 014905 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    A.S. Galoyan, A. Ribon, V.V. Uzhinsky, JETP Lett. 102, 324 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    W. Broniowski, W. Florkowski, Phys. Rev. C 65, 024905 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    New Muon Collaboration (M. Arneodo et al.), Nucl. Phys. B 481, 3 (1996)ADSGoogle Scholar
  33. 33.
    S. Bethke, J. Phys. G 26, R27 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    J.M. Campbell, J.W. Huston, W.J. Stirling, Rep. Prog. Phys. 70, 1 (2006)Google Scholar
  35. 35.
    ALICE Collaboration (B. Abelev et al.), Eur. Phys. J. C 73, 2662 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    ALICE Collaboration (J. Adam et al.), Phys. Lett. B 753, 319 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    P.Z. Skands, S. Carrazza, J. Rojo, Eur. Phys. J. C 74, 3024 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 720, 52 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    CMS Collaboration (S. Chatrchyan et al.), Eur. Phys. J. C 72, 1945 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 172302 (2003)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of Applied ScienceUmm Al-Qura UniversityMakkahSaudi Arabia

Personalised recommendations