Advertisement

Masses and strong decay properties of radially excited bottom states B(2S) and B(2P) with their strange partners Bs(2S) and Bs(2P)

  • Pallavi Gupta
  • A. UpadhyayEmail author
Regular Article - Theoretical Physics

Abstract.

In this paper, we analyzed the experimentally available radially excited charm mesons to predict the similar spectra for the n = 2 bottom mesons. In the heavy quark effective theory, we explore the flavor independent parameters \(\Delta_{F}^{(b)} = \Delta_{F}^{(c)}\) and \( \lambda_{F}^{(b)} = \lambda_{F}^{(c)}\) to calculate the masses for the experimentally unknown n = 2 bottom mesons B(2S), B(2P), \( B_{s}(2S)\) and \( B_{s}(2P)\). We have also analyzed these bottom masses by applying the QCD and \( 1/m_{Q}\) corrections to the Lagrangian leading to the modification of flavor symmetry parameters as \( \Delta_{F}^{(b)} = \Delta_{F}^{(c)}+ \delta\Delta_{F}\) and \( \lambda_{F}^{(b)} = \lambda_{F}^{(c)} \delta\lambda_{F}\). Further strong decay widths are determined using these calculated masses to check the sensitivity of these corrections for these radially excited mesons. The calculated decay widths are in the form of strong coupling constant ˜ , ˜ and ˜ . We concluded that these corrections are less sensitive for n = 2 masses as compared to n = 1 masses. Branching ratios and branching fractions of these states are calculated to have a deeper understanding of these states. These predicted values can be confronted with the future experimental data.

References

  1. 1.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    LHCb Collaboration (R. Aaij et al.), Phys. Rev. D 94, 072001 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    LHCb Collaboration (R. Aaij et al.), JHEP 09, 145 (2013)Google Scholar
  4. 4.
    BaBar Collaboration (P. del Amo Sanchez et al.), Phys. Rev. D 82, 111101 (2010)CrossRefGoogle Scholar
  5. 5.
    BaBar Collaboration (B. Aubert et al.), Phys. Rev. D 80, 092003 (2009)CrossRefGoogle Scholar
  6. 6.
    LHCb Collaboration (R. Aaij et al.), Phys. Rev. Lett. 113, 162001 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    P. Gupta, A. Upadhyay, Phys. Rev. D 97, 014015 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    CLEO Collaboration (S. Behrends et al.), Phys. Rev. Lett. 50, 881 (1983)CrossRefGoogle Scholar
  9. 9.
    K. Han et al., Phys. Rev. Lett. 55, 36 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    T. Aaltonen et al., Phys. Rev. Lett. 102, 102003 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    CDF Collaboration (T.A. Aaltonen et al.), Phys. Rev. Lett. 100, 082001 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Lee-Franzini et al., Phys. Rev. Lett. 65, 2947 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    LHCb Collaboration (R. Aaij et al.), JHEP 04, 024 (2015)Google Scholar
  14. 14.
    CDF Collaboration (T.A. Aaltonen et al.), Phys. Rev. D 90, 012013 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    Hao Xu, Xiang Liu, Takayuki Matsuki, Phys. Rev. D 89, 097502 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    L.Y. Xiao, X.H. Zhong, Phys. Rev. D 90, 074029 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    T. Matsuki, T. Morii, K. Sudoh, Eur. Phys. J. A 31, 701 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 66, 197 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Sun, Q.-T. Song, D.-Y. Chen, X. Liu, S.-L. Zhu, Phys. Rev. D 89, 054026 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    P. Colangelo, F. De Fazio, F. Giannuzzi, S. Nicotri, Phys. Rev. D 86, 054024 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    A. Falk, T. Mehen, Phys. Rev. D 53, 231 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Zhi-Gang Wang, Eur. Phys. J. Plus 129, 186 (2014)CrossRefGoogle Scholar
  24. 24.
    C.Y. Cheunh, C.W. Hwang, J. High Energy Phys. 2014, 177 (2014)CrossRefGoogle Scholar
  25. 25.
    Hai-Yang Cheng, Fu-Sheng Yu, Phys. Rev. D 89, 114017 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    G. Amoros, M. Beneke, M. Neubert, Phys. Lett. B 401, 81 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    A. Upadhayay et al., Adv. High Energy Phys. 2014, 619783 (2014)Google Scholar
  28. 28.
    Gui-Liang Yu et al., Chin. Phys. C 39, 063101 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    T. Matsuki, K. Seo, Phys. Rev. D 85, 014036 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Zhi-Gang Wang, Phys. Rev. D 88, 114003 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    G.L. Yu, Z.-G. Wang, Z.-Y. Li, G.-Q. Meng, Chin. Phys. C 39, 063101 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Virendrasinh Kher et al., Chin. Phys. C 41, 073101 (2017)CrossRefGoogle Scholar
  33. 33.
    M. Di Pierro, E. Eichten, Phys. Rev. D 64, 114004 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    T.A. Lahde, Nucl. Phys. A 674, 141 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    H.Y. Cheng, F.S. Yu, Eur. Phys. J. C 77, 668 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Stephen Godfrey, Kenn Moats, Phys. Rev. D 93, 034035 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Pietro Colangelo, Fulvia De Fazio, Phys. Rev. D 81, 094001 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    B. Zhang, X. Liu, W.Z. Deng, S.L. Zhu, Eur. Phys. J. C 50, 617 (2007) arXiv:hep-ph/0609013ADSCrossRefGoogle Scholar
  39. 39.
    J. Segovia, D.R. Entem, F. Fernandez, Phys. Rev. D 91, 094020 (2015)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Materials Science, TIETPatialaIndia

Personalised recommendations